Preview

Powder Metallurgy аnd Functional Coatings

Advanced search

Structure forming of Cu–W pseudoalloys prepared in different routes

https://doi.org/10.17073/1997-308X-2021-1-12-20

Abstract

The microstructures of alloys formed during the sintering of tungsten powder mixtures (PV2, 3.8–6.0 μm average particle size) and copper (PMS-11, 45–60 μm fraction) prepared by various methods were compared. The methods included simple metal powder mixing, mechanical activation (MA) of metal powders, copper precipitation from the solution of its sulfate (CuSO4·5H2O) on tungsten powder with simultaneous mechanical activation. The molar ratio of metals in mixtures Cu/W = 1. An aqueous solution for copper deposition included diethylene glycol (up to 30 %), glycerin (up to 8 %), hydrofluoric acid (up to 0.1 %), wetting agent OP-10 (up to 0.8 %). Mechanical activation was carried out in an AGO-2 planetary mill with 200 g of steel balls charged into the drums rotating at 2220 rpm for 5 min. Reduced copper in the solution and in the air rapidly oxidizes to the Cu2O oxide, so the composite powders obtained were washed, dried, and stored in an argon atmosphere. Samples pressed from the powders obtained (tablets 3 mm in diameter, 1.5–2.0 mm in height with a density of 7.7–8.0 g/cm3) were sintered in argon at atmospheric pressure and temperatures from 1000 to 1500 °C. During the sintering of Cu–W composite particles, several areas of the process can be distinguished. «Solid phase» sintering occurs at the contact points of composite particles at temperatures lower than the copper melting point. When samples are heated from the melting point to 1200 °C, samples are sintered by the liquid-phase mechanism from the conventional mixture of metal powders to form a low-porous cake. When composite powders obtained by MA during the copper deposition and MA of metal powder mixtures are sintered, samples are delaminated with the formation of large pores elongated perpendicular to the pressing axis and partially filled with copper melt. When samples obtained by powder MA are heated above 1400 °C, phase separation occurs and almost all copper is displaced from the sample to the surface.

About the Authors

S. G. Vadchenko
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Cand. Sci. (Phys.-Math.), leading researcher of Laboratory of dynamics of microheterogeneous processes

142432, Moscow region, Noginsk district, Chernogolovka, Academician Osip’yan str., 8



E. V. Suvorova
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

engineer, Laboratory of dynamics of microheterogeneous processes

Chernogolovka



N. I. Mukhina
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

technologist, Laboratory of materials science

Chernogolovka



I. D. Kovalev
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Cand. Sci. (Phys.-Math.), researcher, Laboratory of X-ray investigation

Chernogolovka



E. V. Illarionova
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

research engineer, Laboratory of dynamics of microheterogeneous processes

Chernogolovka



References

1. Hiroaki Okamoto. Desk handbook — phase diagrams for binary alloys. 2-nd ed. Ohio, USA: 2010. 44073-0002. www.asminternational.org.

2. Zhou Zhangjian, Kwon Y.S. Fabrication of W—Cu composite by resistance sintering under ultra-high pressure. J. Mater. Process. Technol. 2005. Vol. 168. No. 1. P. 107—111. DOI: 10.1016/j.jmatprotec.2004.11.008.

3. Zhou Z.J., Du J., Song S.X., Zhong Z.H., Ge C.C. Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method. J. Alloys Compd. 2007. Vol. 428. No. 1—2. P. 146—150. DOI: 10.1016/j.jallcom.2006.03.073.

4. Gupta R., Kumar R., Chaubey A., Kanpara S., Khirwadkar S., Bhoi B. Development of W—Cu functionally graded material by Spark Plasma Sintering Process for plasma facing component application. Trans. Powder Metall. Assoc. India. 2017. Vol. 43. No. 2. P. 55—61.

5. Zhou Z.J., Song S.X., Du J., Zhong Z.H., Ge C.C. Performance of W/Cu FGM based plasma facing components under high heat load test. J. Nucl. Mater. 2007. Vol. 363—365. P. 1309—1314. https://doi.org/10.1016/j.jnucmat.2007.01.184.

6. Jiang G.S., Wang Z.F., Gu Y., Zhang Q.W., Gao Y., Kuang K. Fabrication of electronic packaging grade Cu—W materials by high-temperature and high-velocity compaction. IEEE Trans. Compon. Packag. Manufact. Technol. 2012. Vol. 2. No. 6. P. 1039—1042.

7. Kryachko L.A., Laptev A.V., Tolochin A.I., Bega N.D., Evich Ya.I., Golovkova M.E., Lebed A.V. The structure and properties of the composite W—50%(vol.)Cu, prepared using a tungsten powder, activated by grinding in a ball mill. Elektricheskie kontakty i electrody. Kiev: IPM NAS of Ukraine, 2014. P. 75—89 (In Russ.).

8. Johnson J.L., Brezovsky J.J., German R.M. Effects of tungsten particle size and copper content on densification of liquid-phase-sintered W—Cu. Metall. Mater. Trans. A. 2005. Vol. 36. P. 2807—2814. https://doi.org/10.1007/s11661-005-0277-y.

9. Ghaderi Hamidi A., Arabi H., Rastegari S. Tungsten—copper composite production by activated sintering and infiltration. Int. J. Refract. Met. Hard Mater. 2011. Vol. 29. No. 4. P. 538—541. DOI: 1016./j.ijrmhm.2011.03.009.

10. Jedamzik R., Neubrand A., Rödel J. Functionally graded materials by electrochemical processing and infiltration: application to tungsten/copper composites. 2000. J. Mater. Sci. Vol. 35. P. 477—486. https://doi.org/10.1023/A:1004735904984.

11. Dirks A.G., Van den Broek J.J. Metastable solid solutions in vapor deposited Cu—Cr, Cu—Mo, and Cu—W thin films. J. Vac. Sci. Technol. A. 1985. Vol. 3. P. 2618. https://doi.org/10.1116/1.572799.

12. Dongdong Gu. Laser additive manufacturing of high-performance materials. Springer-Verlag Berlin Heidelberg, 2015. DOI: 10.1007/978-3-662-46089-4.

13. Ardestani M., Rafiei M., Salehian S., Reza Raoufi M., Zakeri M. Compressibility and solid-state sintering behavior of W—Cu composite powders. Sci. Eng. Compos. Mater. 2015. Vol. 22. No. 3. P. 257—261. DOI: 10.1515/secm-2013-0159.

14. Aydinyan S.V., Kirakosyan H.V., Zakaryan M.K., Abovyan L.S., Kharatyan S.L., Peikrishvili A., Mamniashvili G., Godibadze B., Chagelishvili E. Sh., Lesuer D.R., Gutierrez M. Fabrication of Cu—W nanocomposites by integration of self-propagating high-temperature synthesis and hot explosive consolidation technologies. Eur. Chem.Technol. J. 2018. No. 4. P. 301—309. http://dx.doi.org/10.18321/ectj763.

15. Ding L., Xiang D.P., Li Y.Y., Li C., Li J.B. Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2012. Vol. 33. P. 65—69. http://doi.org/10.1016/j.ijrmhm.2012.02.017.

16. Maneshian M.H., Simchi A., Razavi Hesabi Z. Structural changes during synthesizing of nanostructured W—20wt.%Cu composite powder by mechanical alloying. Mater. Sci. Eng. A. 2007. Vol. 445—446. P. 86—93. http://doi.org/10.1016/j.msea.2006.09.005.

17. Chuvil’deev V.N., Nokhrin A.V., Baranov G.V., Moskvicheva A.V., Lopatin Yu.G., Kotkov D.N., Blagoveshchenskii Yu.V., Kozlova N.A., Shotin S.V., Konychev D.A., Piskunov A.V. Investigation of the structure and mechanical properties of nano- and ultrafine mechanically activated tungsten pseudo-alloys. Fizika tverdogo tela. Vestnik Nizhny Novgorod University. 2010. No. 2 (1). P. 47—59 (In Russ.).

18. Yang X., Zou J., Xiao P., Wang X. Effects of Zr addition on properties and vacuum arc characteristics of Cu—W alloy. Vacuum. 2014. Vol. 106. P. 16—20. http://doi.org/10.1016/j.vacuum.2014.03.009.

19. Vadchenko S.G., Suvorova E.V., Mukhina N.I., Kovalev I.D. Copper deposition from its sulfate solution onto titanium powder with simultaneous mechanical activation of mixture. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Universities’ Proceedings. Powder Metallurgy аnd Functional Coatings). 2020. No. 1. P. 4—10 (In Russ.). https://doi.org/10.17073/1997308X-2020-4-10.

20. Vadchenko S.G., Suvorova E.V., Mukhina N.I., Kovalev I.D., Illarionova E.V. Preparation of CuCr pseudo-alloys by deposition of copper from a solution onto chromium powders with simultaneous mechanical activation of the mixture. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Universities’ Proceedings. Powder Metallurgy аnd Functional Coatings). 2020. No. 4. P. 14—21 (In Russ.). https://dx.doi.org/10.17073/1997308X-2020-4-14-21.

21. Zherebtsov D.A., Archugov S.A., Mikhailov G.G. Calibration of thermocouples at the melting point of copper. Izvestiya Chelyabinskogo nauchnogo tsentra UrO RAN. 1999. No. 2. P. 91—100 (In Russ.).

22. Winegard W.C. An introduction to the solidification of metals. London, 1964.

23. Gomes U.U., Da Costa F.A., Da Silva A.G.P. On sintering of W—Cu composite alloys. In: Powder Metallurgical High Performance Materials: Proc. 15th Int. Plansee Seminar (Reutte, Austria, May 2001). Vol. 1. Reutte, Austria: High Performance P/M Metals, 2001. P. 177—189.

24. Ignat’eva T., Borovinskaya I. Chemical dispersion as a method for segregation of ultrafine and nanosized powders of SHS refractory compounds. Eur. Chem.-Technol. J. 2013. Vol. 15. P. 111—116. DOI: 10.18321/ectj148.

25. Prasitskii G.V., Inyukhin M.V. Parameters and techniques for the production of heat sink materials for semiconductor devices. Naukoemkie tekhnologii. 2014. Vol. 15. No. 2. P. 10—19 (In Russ.).

26. Hafed I., Azizan A., Azmi R. Enhanced liquid-phase sintering of W—Cu composites by liquid infiltration. Int. J. Refract. Met. Hard Mater. 2014. Vol. 43. P. 222—226. https://doi.org/10.1016/j.ijrmhm.2013.12.004.

27. Loktyushin V.A., Adamenko N.A., Gurevich L.M. Contact interactions in composite materials. Volgograd: Volgograd State Technical University, 2003 (In Russ.).


Review

For citations:


Vadchenko S.G., Suvorova E.V., Mukhina N.I., Kovalev I.D., Illarionova E.V. Structure forming of Cu–W pseudoalloys prepared in different routes. Powder Metallurgy аnd Functional Coatings. 2021;(1):12-20. (In Russ.) https://doi.org/10.17073/1997-308X-2021-1-12-20

Views: 633


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)