Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Combustion in layered Ni + Al and Ti + Al + C powder mixtures

https://doi.org/10.17073/1997-308X-2021-1-31-37

Abstract

The paper focuses on the development of a cermet coating production technology using the method of self-propagating high-temperature synthesis (SHS). The relevance of this study is associated with the widespread use of flat electric heaters and protective coatings for various purposes. A method for producing electrically conductive coatings using SHS in Ni + Al and Ti + + Al + C powder mixtures was proposed. The features of the autowave SHS process in Ni + Al and Ti + Al + C powder mixtures were investigated. The mixture was applied to a ceramic substrate in the form of a layer (0.2÷2.0)·10–3 m in thickness through a stencil in the form of a suspension in isopropyl alcohol. The effect of the mixture powder layer thickness on the front propagation velocity and maximum temperature was studied. It was shown that these parameters naturally increase with an increase in the thickness. It was found that the coating based on the Ni + Al mixture consists of NiAl, Ni3Al intermetallic compounds, and the coating based on Ti + Al + C consists of TiC and MAX phases of Ti2AlC, Ti3AlC2. The coating based on intermetallic compounds consists of rounded particles fused together and containing NiAl, Ni3Al phases. Coatings obtained from the Ti + Al + C mixture contain needle crystals of MAX phases and interspersed rounded particles of titanium carbide. The content of the NiAl and Ti2AlC target phases increases with the increasing layer thickness. Coatings based on NiAl, Ni3Al and Ti2AlC, Ti3AlC2 heat-resistant phases (0.2÷1.2)·10–3 m in thickness with a specific electrical resistance of 0.1–0.6 μΩ·m were obtained.

About the Authors

A. M. Shul′pekov
Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Eng.), leading researcher of the Department of structural macrokinetics

634055, Tomsk, Academicheskii pr., 10/3



R. M. Gabbasov
Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Eng.), researcher of the Department of structural macrokinetics

Tomsk



O. K. Lepakova
Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Eng.), leading researcher of the Department of structural macrokinetics

Tomsk



References

1. Yue Yang, Hua Wu. Microstructure and microhardness of tempered Ni—Al alloyed layer. J. Mater. Sci. Technol. 2012. Vol. 28. No. 10. P. 937—940.

2. Grinberg B.A., Ivanov M.A. Intermetallides Ni3 Al and TiAl: microstructure, deformation behavior. Ekaterinburg: UrO RAN, 2002 (In Russ.).

3. Hasui A., Morigaki O. Surfacing and spraying. Moscow: Mashinostroenie, 1985 (In Russ.).

4. Miladin Radovic, Barsoum M.W. MAX phases: Bridging the gap between metals and ceramics. Am. Ceram. Soc. Bull. 2013. Vol. 92. No. 3. P. 20—27.

5. Barsoum M.W., El-Raghy T., Porter W.D., Wang H., Ho J.C., Chakraborty S. Oxidation of Hf2 SnC and Nb2 SnC in air in the 400—600 °C temperature range. J. Appl. Phys. 2000. Vol. 88. P. 6316.

6. Rubtsova O.A., Kuchumova I.D., Miller V.S. Structural studies of nickelide coatings. In: Science. Industry. Defense: Proc. 16 All-Russ. sci.-tech. conf. (Novosibirsk, 22—24 Apr. 2015). Novosibirsk: Izd-vo NGTU, 2015. P. 675—678 (In Russ.).

7. Chelnokov E.I. Ceramic electric heating element and method for its manufacture: Pat. 2154361 (RF). 2000 (In Russ.).

8. Andronov B.N., Zhuravov V.D., Molotkov V.A., Titova V.V., Shumovskii V.I. Thick film resistive element: Pat. 2054720 (RF). 1992 (In Russ.).

9. Shul’pekov A.M., Lapshin O.V. Self-propagating hightemperature synthesis in a thin-layer CuO—B—glass system. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Universities’ Proceedings. Powder Metallurgy аnd Functional Coatings). 2018. No. 3. P. 4654 (In Russ.).

10. Shul’pekov A.M. Glass-ceramic SHS coatings for film electric heaters. Aktual’nye problemy sovremennoi nauki. 2017. Vol. 93. No. 2. P. 212—215 (In Russ.).

11. Wang X.W., Zhou V.C. Layered machinable and electrically conductive Ti 2 AlC and Ti3 AlC 2 ceramics. J. Mater. Sci. Technol. 2010. Vol. 26. No. 5. P. 385—416.

12. Itin V.I., Naiborodenko Yu.S. High temperature synthesis of intermetallic compounds. Tomsk: Izd-vo Tomsk. un-ta, 1989 (In Russ.).

13. Levashov E.A., Pogozhev Yu.S., Shtansky D.V., Petrzhik M.I. Self-propagating high-temperature synthesis of ceramic materials based on the Mn+1 AX n phases in the Ti—CrAl—C system. Russ. J. Non-Ferr. Met. 2009. Vol. 50. No. 2. Р. 151—159.

14. Zhimei Sun, Rajeev Ahuja, Jochen M. Theoretical investigation of the solubility in (Mx M′2–x )AlC (M and M′ = Ti, V, Cr). Phys. Rev. B. 2003. Vol. 68. P. 224112224119.

15. Fedotov A.F., Amosov A.P., Latukhin E.I., Ermoshkin A.A., Davydov D.M. The effect of gasifying additives on the phase composition of combustion products during self-propagating high-temperature synthesis of MAX phases in the Ti—Al—C system. Izvestiya Samarskogo nauchnogo tsentra RAN. 2004. Vol. 16. No. 6. P. 50—55 (In Russ.).

16. Shulpekov A.M., Lepakova O.K., Salamatov V.G., Afanasyev N.I. Advanced structural materials based on the Ti—Cr—Al—C system. J. Phys. Conf. Ser. 2018. Vol. 1115. Iss. 4. P. 042059. https://doi.org/10.1088/1742-6596/1115/4/042059.

17. Komarova M.V., Vorozhtsov A.B., Vakutin A.G. The study of the burning rate of high-energy materials containing modified nanoaluminum. Polzunovskii vestnik. 2015. Vol. 1. No. 4. P. 88—91 (In Russ.).

18. Mukasyan A.S., White J.D.E., Kovalev D., Kochetov N., Ponomarev V., Son S.F. Dynamics of phase transformation during thermal explosion in the Al—Ni system: Influence of mechanical activation. Physica. B. 2010. Vol. 405. No. 2. P. 778—784.

19. Kochetov N.A., Vadchenko S.G. Mechanically activated SHS of NiAl: Effect of Ni morphology and mechanoactivation conditions. Int. J. SHS. 2012. Vol. 21. No. 1. P. 55—58.

20. Grinchuk P.S., Rabinovich O.S., Rogachev A.S., Kochetov N.A. An experimental study of the combustion of diluted mechanically activated powders based on Ni/Al. In: Free convection. Heat and mass transfer during chemical transformations: Proc. 4-th Russ. conf. on heat exchange (Moscow, 23—27 Oct. 2006). Moscow: Publ. MEI. Vol. 3. P. 211—214 (In Russ.).

21. Dolmatov A.V., Pinchuk M.V., Sergeichev A.V. Optical measurements and analysis of the thermal microstructure of the SHS wave in the Ni—Al system. Vestnik Yugorskogo gos. un-ta. 2015. Iss. 2. No. 37. P. 14—26 (In Russ.).

22. Shulpekov A.M., Gabbasov R.M. Coating in the Ni—Al system using the SHS method. J. Phys. Conf. Ser. 2018. Vol. 1115. Iss. 4. P. 042061. https://doi.org/10.1088/17426596/1115/4/042061.

23. Reut O.P., Khina B.B., Markova L.V., Tolstyak E.I., Sarantsev V.V. Coating technology based on titanium carbide HER parts with SHS reagents. Lit’yo i metallurgiya. 2007. No. 1. P. 145—153 (In Russ.).

24. Magunov A.N. Spectral pyrometry (Review). Prib. Tekh. Eksp. 2009. No. 4. P. 5—28.

25. Kochetov N.A., Seplyarskii B.S. Dependence of the burning rate on the sample size in the Ni + Al system. Fizika goreniya i vzryva. 2014. Vol. 50. No. 4. P. 29—35 (In Russ.).


Review

For citations:


Shul′pekov A.M., Gabbasov R.M., Lepakova O.K. Combustion in layered Ni + Al and Ti + Al + C powder mixtures. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2021;(1):31-37. (In Russ.) https://doi.org/10.17073/1997-308X-2021-1-31-37

Views: 511


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)