The effect of titanium-carbon mixture mechanical activation on SHS pressing parameters and consolidated titanium carbide microstructure
https://doi.org/10.17073/1997-308X-2021-1-38-46
Abstract
About the Authors
Yu. V. BogatovRussian Federation
Cand. Sci. (Eng.), researcher of the Laboratory of energy stimulation of physical and chemical processes
142432, Moscow region, Noginsk district, Chernogolovka, Academician Osip’yan str., 8
V. A. Shcherbakov
Russian Federation
Dr. Sci. (Phys.-Math.), head of the Laboratory of energy stimulation of physical and chemical processes
Chernogolovka
I. D. Kovalev
Russian Federation
Cand. Sci. (Phys.-Math.), researcher of the Laboratory of X-ray structural studies
Chernogolovka
References
1. Kiparisov S.S., Levinsky Yu.V., Petrov A.P. Titanium carbide. Obtaining, application properties. Moscow: Metallurgiya, 1987 (In Russ.).
2. Tret’yakov V.I. Fundamentals of metal science and technology for the production of hard alloys. Moscow.: Metallurgiya, 1976 (In Russ.).
3. Vasanthakumar K., Bakshi S.R. Effect of C/Ti ratio on densification, microstructure and mechanical properties of TiC x prepared by reactive spark plasma sintering. Ceram. Int. 2018. Vol. 44. No. 1. P. 484—494.
4. Liu G., Li J., Chen K. Combustion synthesis of refractory and hard materials: A review. Int. J. Refract. Met. Hard Mater. 2013. Vol. 39. P. 90—102. http://dx.doi.org/10.1016/j.ijrmhm.2012.09.002.
5. Lixia Cheng, Zhipeng Xie, Guanwei Liu, Wei Liu, Weinjiang Xui. Densification and mechanical properties of TiC by SPS-effects of holding time, sintering temperature and pressure condition. J. Eur. Ceram. Soc. 2012. Vol. 32. P. 3399—3406.
6. Aziz Babapoo, Mehdi Shahedi Asl, Zohre Ahmadi, Abbas Sabahi Namini. Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide. Ceram. Int. 2018. Vol. 44. Iss. 12. P. 14541—14546. https://doi.org/10.1016/j.ceramint.2018.05.071.
7. Pityulin A.N. Power compaction in SHS processes. In: Self-propagating high-temperature synthesis: theory and practice. Chernogolovka: Territoriya, 2001. P. 333—353 (In Russ.).
8. Bogatov Yu.V., Levashov E.A., Pityulin A.N. The influence of the features of the SHS process on the structure of compact titanium carbide. Poroshkovaya Metallurgiya. 1991. No. 7. P. 76—78 (In Russ.).
9. Capaldi M.J., Saidi A., Wood J.V. Reaction synthesis of TiC and Fe—TiC composites. ISIJ Intern. 1997. Vol. 37. No. 2. P. 188—193.
10. Xing-Hong Zhang, Jie-Cai Han, Xiao-Dong He, Kvanin V.L. Combustion synthesis and thermal stress analysis of TiC—Ni functionally graded materials. J. Mater. Synth. Process. 2000. Vol. 8. No. 1. P. 29—34.
11. Xinghong Zhang, Xiaodong He, Jiecai Han, Wei Qu, Kvanin V.L. Combustion synthesis and densification of largescale TiC—xNi cermets. Mater. Lett. 2002. Vol. 56. No. 3. P. 183—187.
12. Shcherbakov V.A., Telepa V.T., Shcherbakov A.V. Fused TiC by electrothermal explosion under pressure. Int. J. SHS. 2015. Vol. 24. No. 4. P. 251—252. DOI: 10.3103/S1061386215040111.
13. Shcherbakov V.A., Gryadunov A.N., Telepa V.T., Shcherbakov A.V. Electrothermal explosion in Ti—C mixtures under pressure. Int. J. SHS. 2014. Vol. 23. No. 2. P. 122—124.
14. Alam M.S., Shafirovich E. Mechanically activated combustion synthesis of molybdenum silicides and borosilicides for ultrahigh-temperature structural applications. Proc. Combust. Inst. 2015. Vol. 35. P. 2275—2281. http://dx.doi.org/10.1016/j.proci.2014.05.019.
15. Levashov E.A., Kurbatkina V.V., Kolesnichenko K.V. Regularities of the effect of preliminary mechanical activation on the reactivity of titanium-based SHS mixtures. Izvestiya vuzov. Tsvetnaya metallurgiya (Universities’ Proceedings. Non-Ferrous Metallurgy). 2000. No. 6. P. 61—67 (In Russ.).
16. Maglia F., Anselmi-Tamburini U., Deida C., Delogu F., Cocco G., Munir Z.F. Role mechanical activation in SHS synthesis of TiC. J. Mater. Sci. 2004. Vol. 39. P. 5227—5230.
17. Kochetov N.A., Rogachev A.S., Pogozhev Yu.S. The influence of the method of mechanical activation of the reaction mixture on the wave propagation velocity of SHS reactions and the microstructure of the TiC—Ni alloy. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Universities’ Proceedings. Powder Metallurgy аnd Functional Coatings). 2009. No. 3. P. 31—35 (In Russ.).
18. Bogatov Yu.V., Barinov V.Yu., Shcherbakov V.A. The effect of the morphology of titanium powders on the SHS parameters and the structure of compact titanium diboride. Perspektivnye materialy. 2020. No. 3. P. 50—60 (In Russ.). DOI: 10.30791/1028-978X-2020-3-50-60.
19. Dymchenko N.P., Shishlyannikova L.M., Yaroslavtseva N.N. The use of computers in calculating the fine crystalline structure of polycrystals by the second and fourth moments method. Apparatura i metody rentgenovskogo analiza. 1974. Iss. 15. P. 37—45 (In Russ.).
20. Saltykov S.A. Stereometric metallography. Moscow: Metallurgiya, 1976 (In Russ.).
21. Kiparisov S.S., Libenson G.A. Powder metallurgy. Moscow: Metallurgiya, 1991 (In Russ.).
22. Shadrinov N.V., Kapitonov E.A. Effect of carbon black activation on the properties of nitrile butadiene rubber. Perspektivnye materialy. 2014. No. 8. P. 50—55 (In Russ.).
23. Rubber technology. Compounding and testing for performance. Ed. J.S. Dick. Munich: Hanser Publ.; Cincinnati: Hanser Gardner Publ., 2001.
24. Ivanovskii V.I. Carbon black. Processes and apparatuses. Omsk: OAO «Tekhuglerod», 2004 (In Russ.).
25. Koval’chenko M.S. The theoretical basis of the hot processing of porous materials by pressure. Kiev: Naukova dumka, 1980 (In Russ.).
Review
For citations:
Bogatov Yu.V., Shcherbakov V.A., Kovalev I.D. The effect of titanium-carbon mixture mechanical activation on SHS pressing parameters and consolidated titanium carbide microstructure. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2021;(1):38-46. (In Russ.) https://doi.org/10.17073/1997-308X-2021-1-38-46