Composition and structure of the diamond/low carbon steel transition zone obtained by contact heating in vacuum at Fe–C eutectic temperature
https://doi.org/10.17073/1997-308X-2021-1-47-59
Abstract
Keywords
About the Authors
P. P. SharinRussian Federation
Cand. Sci. (Phys.-Math.), leading researcher
677000, Yakutsk, Oktyabrskaya str., 1
677000, Yakutsk, Petrovskii str., 2
M. P. Akimova
Russian Federation
postgraduate student of V.P. Larionov Institute of Physical and Technical Problems of the North of SB RAS, junior researcher of Federal Research Centre «The Yakut Scientific Centre SB RAS»
Yakutsk
S. N. Makharova
Russian Federation
Cand. Sci. (Eng.), leading researcher
Yakutsk
S. P. Yakovleva
Russian Federation
Dr. Sci. (Eng.), chief research scientist
Yakutsk
V. I. Popov
Russian Federation
Cand. Sci. (Phys.-Math.), senior research scientist of Scientific and technological laboratory «Graphene nanotechnologies» of Physical and Technical Institute
677000, Yakutsk, Belinskii str., 58
References
1. Semenov A.P., Pozdnyakov V.V., Lapshina V.A. Contact eutectic melting of diamond and graphite with iron triad metals. Doklady Akademii nauk SSSR. 1968. Vol. 181. No. 6. P. 1368—1371 (In Russ.).
2. Semenov A.P., Pozdnyakov V.V., Kraposhina L.B. Friction and contact interaction of graphite and diamond with metals and alloys. Мoscow: Nauka, 1974 (In Russ.).
3. Kolesnichenko G.A., Naidich Yu.V., Petrischev V.Ya., Sergeenkova V.M. Kinetics of contact melting in iron-carbon systems. Powder Metall. Met. Ceram. 1996. Vol. 35. No. 9—10. P. 529—532.
4. Pant U., Meena H., Shivagan D.D. Development and realization of iron-carbon eutectic fixed point at NPLI. MAPAN. J. Metrol. Soc. India. 2018. Vol. 33. P. 201—208.
5. Gurevich Yu.G. Theory of eutectic alloys and eutectic (contact) melting. Met. Sci. Heat Treat. 2010. Vol. 52. No. 7—8. P. 354—356.
6. Hsieh Y.-Z., Lin S.-T. Diamond tool bits with iron alloys as the binding matrices. Mater. Chem. Phys. 2001. Vol. 72. P. 121—125. DOI: 10.1016/S0254-0584(01)00419-9.
7. Tillmann W., Ferreira M., Steffen A., Rüster K., Mŏller J., Bieder S., Paulus M., Tolan M. Carbon reactivity of binder metals in a diamond-metal composites — characterization by scanning electron microscopy and X-ray diffraction. Diamond Relat. Mater. 2013. Vol. 38. P. 118—123.
8. Bukalov S.S., Mikhalitsin L.A., Zubavichus Ya.V., Leites L.A., Novikov Yu.N. Investigation of the structure of graphite and some other sp 2 carbon materials by means of micro-Raman spectroscopy and X-ray diffraction. Rossiiskii khimicheskii zhurnal. 2006. Vol. 50. P. 83—91 (In Russ.).
9. Korepanov V.I., Hamagachi H., Osawa E., Ermolenkov V., Lednev I.K., Etzold B., Levinson O., Zousman B., Eprella C.P., Chang H.-C. Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon. 2017. No. 121. P. 322—329.
10. Ferrari A.C., Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philosoph. Trans. Royal Soc. London. Ser. A. 2004. Vol. 362. No. 1824. P. 2477—2512. DOI: 10.1098/rsta.2004.1452.
11. Mochalin V., Osswald S., Gogotsi Y. Contribution of functional groups to Raman specrum of nanodiamond powders. Chem. Mater. 2009. Vol. 21. No. 2. P. 273—279. DOI: 10.1021/cm802057q.
12. Sidorenko D.A., Zaitsev A.A., Kirichenko A.N., Levashov V.V., Kurbatkina V.V., Loginov P.A., Rupasov S.I., Andreev V.A. Interaction of diamond grains with nanosized alloying agents in metal-matrix composites as studied by Raman spectroscopy. Diamond Relat. Mater. 2013. Vol. 38. P. 59—62. DOI: 10.1016/j.diamond.2013.05.007.
13. Sonin V.M., Chepurov A.I., Zhimulev E.I., Chepurov A.A., Sobolev N.V. Surface graphitization of diamond in K2 CO3 melt at high pressure. Doklady Akademii nauk. 2013. Vol. 451. No. 5. P. 556—559 (In Russ.).
14. Sharin P.P., Yakovleva S.P., Gogolev V.E., Popov V.I. Structure and strength of transition area from natural diamond to chromium and cobalt carbide-forming metals under high-temperature interaction. Perspektivnye materialy. 2016. No. 7. P. 47—60 (In Russ.).
15. Gulyaev A.P. Metallovedenie. Мoscow: Metallurgiya, 1986 (In Russ.).
16. Fourlakidis V., Diaconu L.V., Diószegi A. Effect of carbon content on the ultimate tensile strength in gray cast iron. Mater. Sci. Forum. 2010. Vol. 649. P. 511—516. DOI: 10.4028/www.scientific.net/MSF.649.511.
17. Diószegi A., Fourlakidis V., Svensson I.L. Fracture mechanics of gray cast iron. Mater. Sci. Forum. 2010. Vol. 649. P. 517—522. DOI: 10.4028/www.scientific.net/MSF.649.517.
18. Bartocha D., Janerka K., Suchon J. Charge materials and technology of melt and structure of gray cast iron. J. Mater. Process. Technol. 2005. Vol. 162—163. P. 465—470. DOI: 10.1016/j.jmatprotec.2005.02.050.
19. Salawu E.Y., Ajaui O.O., Inegbenebor A., Akinlabi S., Akinlabi E. Influence of pulverized palm kernel and egg shell additives on the hardness, coefficient of friction and microstructure of grey cast iron material for advance applications. Results Eng. 2019. Vol. 3. P. 100025. DOI: 10.1016/j.rineng.2019.100025.
20. Oloyede O., Cochrane R.F., Mullis A.M. Effect of rapid solidification on the microstructure and microhardness of BS1452 grade 250 hypoeutectic grey cast iron. J. Alloys Compd. 2017. Vol. 707. P. 347—350. DOI: 10.1016/j.jallcom.2016.08.214.
21. Zalkin V.M., Kraposhin V.S. Structure of iron-carbon melts. About stability of cementite in melts. Met. Sci. Heat Treat. 2010. Vol. 52. No. 1—2. P. 3—6.
22. Gerasimova L.P., Guk Yu.P. Quality control of structural materials. Мoscow: Intermet Inzhiniring, 2010 (In Russ.).
Review
For citations:
Sharin P.P., Akimova M.P., Makharova S.N., Yakovleva S.P., Popov V.I. Composition and structure of the diamond/low carbon steel transition zone obtained by contact heating in vacuum at Fe–C eutectic temperature. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2021;(1):47-59. (In Russ.) https://doi.org/10.17073/1997-308X-2021-1-47-59