Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Obtaining a composite material based on Fe3O4 particles coated with Al nanoparticles using a rotating magnetic field

https://doi.org/10.17073/1997-308X-2021-1-71-82

Abstract

The paper focuses on the process of microspherical Fe3O4 particle cladding into a dense shell of Al nanoparticles using a rotating magnetic field (RMF) of uniformly oriented permanent magnets (NN, SS). The author’s unit for generating a rotating magnetic field is presented. Coated magnetite particles were used to form a composite material with a close-packed structure. The transition of an array of Fe3O4 particles from a fibrous dispersed structure to a dense packing upon applying a rotating magnetic field is described according to obtained photo materials. The spectra of reflection, absorption and attenuation of electromagnetic radiation of composite materials with «core–shell» particles are obtained for various material thicknesses. The minimum reflection coefficient is set at –4.5 dB. According to the comparative analysis of attenuation spectra, this indicator decreases in the presence of an Al nanoparticle shell on microspherical Fe3O4 particles in the composite material in contrast to particles without a shell. To explain the reflection and absorption spectra, we develop a hypothesis about the effect of the surface charge density in the layered shell on the change in the of Fe3O4 particle magnetization. The presented method of cladding Fe3O4 microparticles with Al nanoparticles using a rotating magnetic field makes it possible to create composite materials of a large size range for a wide range of applications. The possibility of forming a structure of magnetically controlled particle arrangement based on the developed unit opens up new prospects in various fields of science – from microelectronic technology to the creation of controlled filtration using a rotating magnetic field.

About the Authors

I. A. Shorstkii
Kuban State Technological University
Russian Federation

Cand. Sci. (Eng.), associate prof. of the Department of technological equipment and life-support systems

350072, Krasnodar, Moskovskaya str., 2



N. Yakovlev
Institute of Materials Research and Engineering (IMRE)
Singapore

Dr. Sci. (Eng.), research scientist of Advanced Characterisation and Instrumentation Department

138634, # 08-03, Innovis, Fusionopolis Way, 2



References

1. Kablov E.N. Strategic directions for the development of materials and technologies for their processing for the period up to 2030. Aviatsionnye materialy i tekhnologii. 2012. No. 5. P. 24—30 (In Russ.).

2. Niu M., Pham-Huy C., He H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Microchim. Acta. 2016. Vol. 10. P. 2677—2695.

3. Luo F., Luo Z., Hu W., Li G., Li Y., Liu X., Wang J. Ultralow inter-particle eddy current loss of Fe3 Si/Al2 O 3 soft magnetic composites evolved from FeSiAl/Fe3 O 4 coreshell particles. J. Magn. Magn. Mater. 2019. Vol. 484. P. 218—224.

4. Zhang C., Chen H., Ma M., Yang Z. Facile synthesis of magnetically recoverable Fe3 O4 /Al2 O3 /molecularly imprinted TiO 2 nanocomposites and its molecular recognitive photocatalytic degradation of target contaminant. J. Mol. Catal. A: Chem. 2015. Vol. 402. P. 10—16.

5. Duan W., Li X., Wang Y., Qiang R., Tian C., Wang N., Du Y. Surface functionalization of carbonyl iron with aluminum phosphate coating toward enhanced anti-oxidative ability and microwave absorption properties. Appl. Surf. Sci. 2018. Vol. 427. P. 594—602.

6. Liu Q., Cao B., Feng C., Zhang W., Zhu S., Zhang D. High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles. Compos. Sci. Technol. 2012. Vol. 13. P. 1632—1636.

7. He Z.F., Fang Y., Wang X.J., Pang H. Microwave absorption properties of PANI/ CIP/Fe3 O 4 composites. Synth. Met. 2011. Vol. 161. P. 420—425.

8. Cui C.K., Du Y.C., Li T.H., Zheng X.Y., Wang X.H., Han X.J. Synthesis of electromagnetic functionalized Fe3 O4 microspheres/polyaniline composites by two-step oxidative polymerization. J. Phys. Chem. 2012. Vol. 116 (31). P. 9523—9531.

9. Zong M., Huang Y., Zhao Y., Sun X., Qu C.H., Luo D.D. Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO—Fe3 O 4 composites. Rsc Adv. 2013. Vol. 3 (45). P. 23638—23648.

10. Zhang T., Huang D.Q., Yang Y., Kang F.Y., Gu J.L. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Mater. Sci. Eng. B. 2013. Vol. 178 (1). P. 1—9.

11. Zhang Z.D., Shi Z.C., Fan R.H., Gao M., Guo J.Y., Qi X.G., Sun K.N. Microwave absorption properties of Fe@Al2 O3 nanoembedments prepared by mechanosynthesis. Mater. Chem. Phys. 2011. Vol. 130. P. 615—618.

12. Xuan S., Hao L., Jiang W., Gong X., Hu Y., Chen Z. A facile method to fabricate carbon-encapsulated Fe3 O4 core/shell composites. Nanotechnology. 2007. Vol. 18. Art. 035602.

13. Barbey R., Lavanant L., Paripovic D., Schuwer N., Sugnaux C., Tugulu S., Klok H.A. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties and applications. Chem. Rev. 2009. Vol. 109 P. 5437—5527.

14. Wu L.Z., Ding J., Jiang H.B., Neo C.P., Chen L.F., Ong C.K. High frequency complex permeability of iron particles in a nonmagnetic matrix. J. Appl. Phys. 2006. Vol. 99. Art. 083905.

15. Ding D., Wang Y., Li X., Qiang R., Xu P., Chu W., Han X., Du Y. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon. 2017. Vol. 111. P. 722—732.

16. Shorstkii I. Dynamic filtering device: Pat. 2544695 (RF). 2013 (In Russ.).

17. Shorstkii I., Yakovlev N. Method for forming an electromagnetic radiation absorber material based on magnetically controlled Fe3O4 particles. Perspektivnye materialy. 2020. No. 3. P. 49—59 (In Russ.).

18. Xiaolei W.A.N.G., Xiukun B.A.O., Yinyan G.U.A.N., Ge X.U. Microwave absorption properties of submicro-composites of core-shell C/Co. Chin. J. Mater. Res. 2017. Vol. 31. P. 241—247.

19. Chung D.D.L. Materials for electromagnetic interference shielding. J. Mater. Eng. Perform. 2000. Vol. 9. P. 350—354.

20. Vonsovskii S.V. Magnetism. Moskow: Nauka, 1984 (In Russ.).

21. You Y., Yuan H., Chen H., Shen J., Li L. Controlled fabrication and microwave absorbing mechanism of hollow Fe3 O4 @C microspheres. Sci. China Chem. 2017. Vol. 6. P. 740—747.

22. Shorstkii I., Yakovlev N. Synthesis of magnetically controlled Fe3 O 4 composites and their enhanced microwave absorption properties. Mater. Res. Express. 2019. Vol. 6. Art. 046104.

23. Shorstkii I., Yakovlev N. Method of absorbing material formation based on magnetically controlled Fe3O4 particles. Inorg. Mater.: Appl. Res. 2020. Vol. 11. P. 78—84.


Review

For citations:


Shorstkii I.A., Yakovlev N. Obtaining a composite material based on Fe3O4 particles coated with Al nanoparticles using a rotating magnetic field. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2021;(1):71-82. (In Russ.) https://doi.org/10.17073/1997-308X-2021-1-71-82

Views: 552


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)