Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Formation of structure and properties of hot-deformed powder steels microalloyed with sodium and calcium during thermal and thermomechanical treatment

https://doi.org/10.17073/1997-308X-2021-3-22-33

Abstract

One of the main problems limiting further growth in the production of parts by the hot forging of porous performs (HFPP) is that the obtained materials are prone to brittle fracture due to the poor quality of interparticle jointing formed during hot deformation, as well as the presence of impurities in the composition of initial powders. The paper studies the possibility of increasing the mechanical properties and endurance performance of hot-deformed powder steels by doping them with sodium or calcium microadditives and using thermomechanical treatment. Sodium bicarbonate and calcium carbonate were used for microalloying. Carbon was added as pencil graphite powder. The temperature of heating porous preforms before hot forging and the carbon content in steels were varied; the content of microalloying additives was, wt.%: 0.2 for sodium, and 0.3 for calcium. Mechanical properties as well as contact and low-cycle fatigue life were tested on 5 × 10 × 55 mm and 10 × 10 × 55 mm prismatic specimens, as well as ∅ 26 × 6 mm cylindrical specimens. In comparison with carburizing and thermal treatment, thermomechanical treatment improves the impact strength and endurance performance of hot-deformed powder steels with Na or Ca microadditives under the contact and low-cycle fatigue loading, and the hot repressing temperature of porous preforms is reduced without compromising the mechanical properties of powder steels obtained. It may be associated with the formation of a more fine-grained structure and higher microstresses of the crystal lattice. The cooling down of preform surface layers during hot forging process operations creates conditions for ausforming in them.

About the Authors

V. Yu. Dorofeyev
Platov South-Russian State Polytechnic University
Russian Federation

Dr. Sci. (Eng.), Professor of the Department of engineering technology, technological machines and equipment

346428, Rostov reg., Novocherkassk, Prosveshcheniya str., 132



A. N. Sviridova
Platov South-Russian State Polytechnic University
Russian Federation

Assistant of the Department of automobiles and transport-technological complexes

346428, Rostov reg., Novocherkassk, Prosveshcheniya str., 132



V. A. Samoilov
Production Company NEVZ LLC
Russian Federation

Project manager for Electric Trains and Electrical Equipment

346413, Rostov reg., Novocherkassk, Mashinostroiteley str., 7



References

1. Dorofeyev Yu.G. Dynamic hot pressing of powder blanks. Moscow: Metallurgiya, 1977 (In Russ.).

2. Kuhn H.A., Ferguson B.L. Powder forging. Princeton, New Jersey: MPIF, 1990.

3. Bernshtein M.L. Thermomechanical treatment of metals and alloys. Vol. 1. Moscow: Metallurgiya, 1968 (In Russ.).

4. Bernshtein M.L., Kaputkina L.M., Konyukova E.V., Nikishov N.A., Shakhkerimov R.N. Changes in the structure of thermomechanically hardened austenite under the effect of temperature and deformation. Russ. Metallurgy. Metally. 1985. No. 1. P. 80—88.

5. Ishikawa T. Understanding and controlling microstructural evolution in metal forming: an overview. In: Microstructure evolution in metal forming processes (Eds. J. Lin, D. Balint, M. Pietrzyk). Oxford, Cambridge, Philadelphia, New Delhi: Woodhead Publ. Ltd., 2012.

6. Yoshie A., Fujioka M., Watanabe Y., Nishioka K., Morikawa H. Modelling of microstructural evolution and mechanical properties of steel plates produced by thermomechanical control process. ISIJ Int. 1992. Vol. 32. P. 395—403.

7. Caminaga C., Button S.T. Mechanical properties of ausforged 27MnSiVS6 microalloyed steel. Rem: Rev. Esc. Minas. 2013. Vol. 66. No. 3. P. 331—338.

8. Nasedkina Ya.I., Karavaeva M.V., Kaibyshev O.A. Influence of combined thermomechanical treatment on the structure and mechanical properties of high-carbon bearing steel. Vestnik UGATU. Mashinostroenie. 2012. Vol. 16. No. 5 (50). P. 145—148 (In Russ.).

9. Dorofeyev V.Yu., Sviridova A.N., Svistun L.I. Influence of Sodium microalloying on rolling contact endurance and mechanical properties of hot-deformed powder steels. Russ. J. Non-Ferr. Met. 2020. Vol. 61. No. 3. P. 354—361.

10. Bernardo E., Galán-Salazar A., Campos M., Torralba J.M. A new approach to understand the contribution of the microstructure in the fracture behavior of sintered steels. Int. J. Powder Metal. 2016. Vol. 52. No. 2. P. 29—35.

11. Kabatova M., Dudrova E., Wronski A.S. Microcrack nucleation, growth, coalescence and propagation in the fatigue failure of a powder metallurgy steel. Fatigue Fract. Eng. Mater. Struct. 2009. Vol. 32. P. 214—222. DOI: 10.1111/j.1460-2695.2009.01328.x.

12. Phillips R.A., King J.E., Moon J.R. Fracture toughness of some high density PM steels. Powder Metal. 2000. Vol. 43. No. 1. P. 43—48. DOI: 10.1179/pom.2000.43.1.43.

13. MPIF Standard 35. Materials Standards for PM Structural Parts. Princeton, NY: MPIF, 2012.

14. Saritas S., James W.B., Lawley A. Fatigue properties of sintered steels: A critical review. In: Proc. European Congress and Exhibition on Powder Metallurgy (Nice, France, 22—24 October, 2001). EPMA, 2001. Vol. 1. P. 272—285.

15. Zvonarev E.V., D’yachkova L.N., Kerzhentseva L.F., Shidlovskaya S.I. Microalloying with alkali metals of powder materials based on iron. Metal Sci. Heat Treatment. 1991. Vol. 33. No. 8. P. 612—616.

16. D’yachkova L.N., Glukhova N.P., Zvonarev E.V., Samal’ G.I. Effect of microadditions on the structure and properties of powder carbon steel. Metal Sci. Heat Treatment. 1991. Vol. 33. No. 1. P. 64—68.

17. Villalobos J.C., Del-Pozo A., Campillo B., Mayen J., Serna S. Microalloyed steels through history until 2018: Review of chemical composition, processing and hydrogen service. Metals. 2018. Vol. 8. No. 5. Art. 351. DOI: 10.3390/met8050351.

18. Dorofeyev Yu.G., Dorofeyev V.Yu., Kochkarova Kh.S. Special features of distribution of microalloying elements in hot-deformed iron-base powder materials and their influence on the quality of interparticle bonding. Metal Sci. Heat Treatment. 2013. Vol. 55. No. 7-8. P. 433—437. DOI: 10.1007/s11041-013-9650-4.

19. Brodetskii I.L., Kharchevnikov V.P., Belov B.F., Trotsan A.I. Effect of calcium on grain boundary embrittlement of structural steel strengthened with carbonitrides. Metal Sci. Heat Treatment. 1995. Vol. 37. No. 5. P. 200—202.

20. Kharlashin P.S., Ershov G.S., Gavrilyuk G.V. Microalloying and modification of steels and alloys. Vestnik Priazovskogo gosudarstvennogo tekhnicheskogo universiteta. 1995. Iss. 1. P. 21—29 (In Russ.).

21. Dorofeyev V.Y., Sviridova A.N., Berezhnoy Y.M., Bessarabov E.N., Kochkarova K.S., Tamadaev V.G. Rolling contact fatigue of hot-deformed powder steels with calcium microadditives. IOP Conf. Series: Mater. Sci. Eng. 2019. Vol. 537. Art. 022046. DOI: 10.1088/1757-899X/537/2/022046.

22. Sarbash R.I. Fatigue endurance of specimens of a powder steel in low-cycle hard loading conditions. Soviet Powder Metallurgy and Metal Ceramics. 1988. Vol. 27. No. 9. P. 746—749. DOI: 10.1007/BF00796238.

23. Dorofeyev V.Yu., Kochkarova Kh.S. Hot forging iron-based powder materials with micro-additives of sodium and calcium. In: Sbornik trudov nauchno-prakticheskogo seminara «Noviye materialy i izdeliya iz metallicheskikh poroshkov. Tekhnologiya. Proizvodstvo. Primeneniye (TPP-PM2011)» (Yoshkar-Ola, 28—30 June 2011). Yoshkar-Ola, 2011. P. 109—114 (In Russ.).

24. Donaldson I.W. Fatigue performance of powder metallurgy materials. Int. J. Powder Metal. 2019. Vol. 55. No. 1. P. 39—45.

25. Orlov A.V., Chertmenskii O.N., Nesterov V.M. Tests of structural materials for rolling contact fatigue. Moscow: Mashinostroenie, 1980 (In Russ.).

26. Suresh S. Fatigue of materials (2nd ed.). Cambridge: Cambridge University Press, 1998. DOI: 10.1017/CBO9780511806575.

27. ASTM B796-20. Standard Test Method for Nonmetallic Inclusion Content of Ferrous Powders Intended for Powder Forging (PF) Applications. West Conshohocken, PA: ASTM International, 2020. DOI: 10.1520/B0796-20.

28. ISO 13947:2011. Metallic powders — Test method for the determination of non-metallic inclusions in metal powders using a powder-forged specimen. CS 77.160. December 2011. P. 5.

29. Erişir E., Bilir O.G., Gezmişoğlu A.E. A study of carbide dissolution in bearing steels using computational thermodynamics and kinetics. In: COMAT 2016. 4th International Conference Recent Trends in Structural Material. Pilsen (Czech Republic, 9-11 November, 2016). URL: https://www.researchgate.net/publication/311495009 (accessed: 04.11.2020).

30. D’yachkova L.N., Kerzhentseva L.F., Markova L.V. Iron based powder materials. Minsk: Tonpik, 2004 (In Russ.).


Review

For citations:


Dorofeyev V.Yu., Sviridova A.N., Samoilov V.A. Formation of structure and properties of hot-deformed powder steels microalloyed with sodium and calcium during thermal and thermomechanical treatment. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2021;(3):22-33. (In Russ.) https://doi.org/10.17073/1997-308X-2021-3-22-33

Views: 407


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)