Effect of mechanical activation and combustion parameters on titanium carbide SHS compaction
https://doi.org/10.17073/1997-308X-2021-3-34-42
Abstract
The paper presents the results of a study on the dense titanium carbide production by SHS compaction. It is shown that the use of a mechanically activated reaction mixture of titanium and carbon black powders makes it possible to obtain titanium carbide samples with a maximum relative density of 95 %. A feature of this research is that the mechanical activation of components and Ti + C mixture stirring were carried out in a ball mill. The study covers the influence of process parameters on the combustion properties and structure of the consolidated titanium carbide. It was found that the high-speed reaction mixture combustion is an essential condition for dense titanium carbide production. It was shown that the burning rate and temperature strongly depend on the size, mass and density of charge compacts. With an increase in the diameter (20–58 mm) and weight (10–70 g) of compacts made of mixtures with activated reagents, the burning rate varied from 10 to 100 cm/s, and the burning temperature varied from 2200 to 3100 °C. An influence of the pre-pressing pressure (applied at the combustion stage) on the burning rate and temperature was shown: the burning rate sharply decreases from 100 to 10 cm/s at pressures between 0 and 10 MPa, and the combustion temperature decreases monotonically from 3000 to 2000 °C at pressures between 0 and 40 MPa. A high-speed combustion mechanism was proposed for the titanium and carbon black reaction mixture where the formation of radial (longitudinal) cracks in compacts pressed from the mechanically activated mixture is an important factor. These cracks ensure the propagation of incandescent impurity gases and the exothermic reaction initiation in the sample volume.
About the Authors
Yu. V. BogatovRussian Federation
Cand. Sci. (Eng.), Senior researcher of the Laboratory of energy stimulation of physical and chemical processes
142432, Moscow reg., Chernogolovka, Acad. Osip’yan str., 8
V. A. Shcherbakov
Russian Federation
Dr. Sci. (Phys.-Math.), Head of the Laboratory of energy stimulation of physical and chemical processes
142432, Moscow reg., Chernogolovka, Acad. Osip’yan str., 8
References
1. Merzhanov A.G., Borovinskaya I.P. Historical retrospective of SHS: An аutoreview. Int. J. SHS. 2008. Vol. 17. P. 242—265.
2. Merzhanov A.G., Ratnikov V.I., Borovinskaya I.P., Dubovitsky F.I., Enman V.K., Bogorodsky E.S., Shifrin Ya.A., Goryachev N.S., Ryabin A .I., Surnin B.N. Solid material. Author’s certificate No. 824677 (USSR). 1978 (In Russ.).
3. Levashov E.A., Bogatov Yu.V., Rogachev A.S., Pityulin A.N., Borovinskaya I.P., Merzhanov A.G. Regularities of the formation of the structure of solid tool materials in the process of SHS-compaction. Inzhenerno-fizicheskiy zhurnal. 1992. Vol. 63. No. 5. P. 558—576 (In Russ.).
4. Levashov E.A., Rogachev A.S., Kurbatkina V.V., Maksimov Yu.M., Yukhvid V.I. Advanced materials and technologies for self-propagating high-temperature synthesis. Moscow: Izd. Dom MISIS, 2011 (In Russ.).
5. Xinghong Zhang, Xiaodong He, Jiecai Han, Wei Qu, Kvanin V.L. Combustion synthesis and densification of largescale TiC—xNi cermets. Mater. Lett. 2002. Vol. 56. No. 3. P. 183—187.
6. Xing-Hong Zhang, Jie-Cai Han, Xiao-Dong He, Kvanin V.L. Combustion synthesis and thermal stress analysis of TiC—Ni functionally graded materials. J. Mater. Synt. Proces. 2000. Vol. 8. No. 1. P. 29—34.
7. Tavadze G.F., Shteinberg A.S. Production of advanced materials by methods of self-propagating high-temperature synthesis. Springer, 2013. DOI: 10.1007/978-3-642-35205-8.
8. Merzhanov A.G., Mukasyan A.S. Solid-flame combustion. Moscow: Torus Press, 2007 (In Russ.).
9. Merzhanov A.G. Solid flame combustion. Chernogolovka: ISMAN, 2000 (In Russ.).
10. Kiparisov S.S., Levinsky Yu.V., Petrov A.P. Titanium carbide. Obtaining, application, properties. Moscow: Metallurgiya, 1987 (In Russ.).
11. Bogatov Yu.V., Shcherbakov V.A. Forced SHS compaction of Ti—B blends: Influence of mixing conditions and sample mass. Int. J. SHS. 2020. Vol. 29. No. 2. P. 100— 103. DOI: 10.3103/S106138622002003X.
12. Manukyan Kh.V., Ya-Cheng Lin, Rouvimov S., McGinn P.J., Mukasyan A.S. Microstructure-reactivity relationship of Ti + C reactive nanomaterials. J. Appl. Phys. 2013. Vol. 113. Art. 024302. DOI: 10.1063/1.4773475.
13. Maglia F., Anselmi-Tamburini U., Deidda C., Delongu F., Cocco G., Munir Z.A. Role mechanical activation in SHS synthesis of TiC. J. Mater. Sci. 2004. Vol. 39. P. 5227— 5230.
14. Bogatov Yu.V., Shcherbakov V.A., Kovalev I.D. The effect of titanium-carbon mixture mechanical activation on SHS pressing parameters and consolidated titanium carbide microstructure. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Powder Metallurgy and Functional Coatings). 2021. Vol. 15. No. 1. P. 38—46 (In Russ.).
15. Kiparisov S.S., Libenson G.A. Powder metallurgy. Moscow: Metallurgiya, 1991 (In Russ.)
16. Bogatov Yu.V., Barinov V.Yu., Shcherbakov V.A. The effect of the morphology of titanium powders on the SHS parameters and the structure of compact titanium diboride. Perspektivnyye materialy. 2020. No. 3. P. 50—60 (In Russ.).
17. Saltykov S.A. Stereometricmetallography. Moscow: Metallurgiya, 1976 (In Russ.).
18. Shadrinov N.V., Kapitonov E.A. Effect of carbon black activation on the properties of nitrile butadiene rubber. Perspektivnyye materialy. 2014. No. 8. P. 50—55 (In Russ.).
19. Dick J.S. (Ed.) Rubber technology. Compounding and testing for performance. Munich, Cincinnati: Hanser Publ., 2001.
20. Ivanovsky V.I. Carbon black. Processes and apparatuses. Omsk: LLC «Tehuglerod», 2004 (In Russ.).
21. Bogatov Yu.V., Levashov E.A., Pityulin A.N. The influence of the features of the SHS process on the structure of compact titanium carbide. Poroshkovaya metallurgiya. 1991. No. 7. P. 76—78 (In Russ.)
22. Shcherbakov V.A., Gryadunov A.N., Steinberg A.S. Macrokinetics of the SHS-compaction process. Inzhenernofizicheskiy zhurnal. 1992. Vol. 63. No. 5. P. 583—592 (In Russ.).
23. Rogachev A.S., Mukasyan A.S. Combustion for material synthesis. Boca Raton—London—New York: CRC Press, 2014.
24. Shcherbakov V.A. Dispersion of a refractory reagent in a gasless combustion wave. Doklady Akademii nauk. 1996. Vol. 347. No. 5. P. 645—648 (In Russ.).
25. Shkodich N.F., Rogachev A.S., Vadchenko S.G., Sachkova N.V., Chassagnon R. Reactivity of mechanoactivated Ni—Al blends. Int. J. SHS. 2012. Vol. 21 No. 2. P. 104—109.
Review
For citations:
Bogatov Yu.V., Shcherbakov V.A. Effect of mechanical activation and combustion parameters on titanium carbide SHS compaction. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2021;(3):34-42. (In Russ.) https://doi.org/10.17073/1997-308X-2021-3-34-42