Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Using the developed cavitation test to evaluate erosion resistance of cermet thermal sprayed coatings

https://doi.org/10.17073/1997-308X-2021-3-62-70

Abstract

Many machinery parts working in contact with a fast-flowing fluid flow (e.g. turbine blades of hydroelectric power plants, valves, pump impeller blades, ship propellers, cooling systems for various units, etc.) are subjected to such type of wear as cavitation erosion. An important objective is to eliminate or reduce cavitation erosion so as to achieve a considerable economic effect. This research uses a patented technique developed to evaluate the cavitation erosion resistance of cermet thermal spray coatings (WC–10Co4Cr and WC–20CrC–7Ni). These coatings were prepared using high velocity air fuel thermal spraying (HVAF). The aim of this study is to test a new technique for evaluating coating cavitation resistance, which differs from the standard one by specimen positioning relative to the testing liquid. In addition, scanning electron microscopy (SEM) was used to analyze the initial structure of the coatings prepared and study their behavior after cavitation exposure. The material volume loss criterion during the cavitation test was used to evaluate the coating resistance. The results of cavitation tests showed that the WC–20CrC–7Ni coating has a somewhat higher cavitation resistance than that of WC–10Co4Cr despite its slightly lower average hardness (850±90 HV0.5 versus 950±60 HV0.5). The study of coating surfaces and cross-sections showed that they feature by different erosion mechanisms. It can be concluded that the presence of defects (pores) in the coating structure is the main reason for reducing their cavitation erosion resistance. Therefore, the developed technique proved effective in obtaining experimental data to analyze cermet thermal spray coatings for cavitation wear.

About the Authors

H. L. Alwan
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Postgraduate student, Welding technology department

620002, Ekaterinburg, Mira str., 19



A. V. Makarov
M.N. Mikheev Institute of Metal Physics of the Ural Branch of RAS
Russian Federation

Dr. Sci. (Eng.), Corresponding member of Russian Academy of Sciences (RAS), Principal research scientist, Head of Materials science department

620108, Ekaterinburg, S. Kovalevskaya str., 18



N. N. Soboleva
Ural Federal University named after the first President of Russia B.N. Yeltsin; Institute of Engineering Science of the Ural Branch of RAS
Russian Federation

Cand. Sci. (Eng.), Senior research scientist, Laboratory of constructional material science, Institute of Engineering Science of the Ural Branch of RAS; Assistant prof., Welding technology department, UrFU

620049, Russia, Ekaterinburg, Komsomolskaya str., 34



Yu. S. Korobov
M.N. Mikheev Institute of Metal Physics of the Ural Branch of RAS
Russian Federation

Dr. Sci. (Eng.), Principal research scientist, Head of Laser/plasma treatment laboratory, IMP UB RAS

620108, Ekaterinburg, S. Kovalevskaya str., 18



V. I. Shumyakov
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Cand. Sci. (Eng.), Assistant prof., Welding technology department

620002, Ekaterinburg, Mira str., 19



N. V. Lezhnin
M.N. Mikheev Institute of Metal Physics of the Ural Branch of RAS
Russian Federation

Cand. Sci. (Eng.), Senior research scientist, Mechanical properties laboratory

620108, Ekaterinburg, S. Kovalevskaya str., 18



V. A. Zavalishin
M.N. Mikheev Institute of Metal Physics of the Ural Branch of RAS
Russian Federation

Cand. Sci. (Phys.-Math.), Leading research scientist

620108, Ekaterinburg, S. Kovalevskaya str., 18



References

1. Богачев И.Н. Кавитационное разрушение и кавитационно-стойкие сплавы. М.: Металлургия, 1972. Bogachev I.N. Cavitation damage and cavitation-resistant alloys. Moscow: Metallurgiya, 1972 (In Russ.).

2. Dular M., Delgosha O.C., Petkovšek M. Observations of cavitation erosion pit formation. Ultrason Sonochem. 2013. Vol. 20. P. 1113—1120. DOI: 10.1016/j.ultsonch.2013.01.011.

3. Plesset M.S., Chapman R.B. Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. J. Fluid Mech. 1971. Vol. 47. P. 283—290. DOI: 10.1017/S0022112071001058.

4. Lauterborn W., Bolle H. Experimental investigation of cavitation bubble collapse in the neighborhood of a solid boundary. J. Fluid Mech. 1975. Vol. 72. P. 391—399. DOI: 10.1017/S0022112075003448.

5. Dular M., Bachert B., Stoffel B., Širok B. Relationship between cavitation structures and cavitation damage. Wear. 2004. Vol. 257. P. 1176—1184. DOI: 10.1016/j.wear.2004.08.004.

6. Brujan E.A., Ikedab T., Matsumoto Y. Shock wave emission from a cloud of bubbles. Soft Mater. 2012. Vol. 8. P. 5777—5783. DOI:10.1039/C2SM25379H.

7. Philipp A., Lauterborn W. Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 1998. Vol. 361. P. 75—116. DOI: 10.1017/S0022112098008738.

8. Korobov Yu.S., Alwan H.L., Filippov M.A., Shumyakov V.I., Soboleva N.N., Sirosh V.A., Estemirova S.H., Makarov A.V. Comparative study on cavitation resistance of deposited metal with metastable structure and stable austenite. Vestnik PNIPU. Mashinostroenie, materialovedenie. 2020. Vol. 22. No. 4. P. 33—41 (In Russ.).

9. Kiryukhantsev-Korneev P.V., Sytchenko A.D., Levashov E.A. Comparative study of coatings formed by electrospark alloying using TiC—NiCr and TiC—NiCr—Eu2O3 electrodes. Russ. J. Non-ferr. Met. 2019. Vol. 60. No. 6. P. 662—672. DOI: 10.3103/S1067821219060099.

10. Knyazeva Zh.V., Yudin P.E., Petrov S.S., Maksimuk A.V. Using metal-sprayed coatings to protect submersible electric pump motors from the impact of complicating factors in oil wells. Russ. J. Non-ferr. Met. 2020. Vol. 61. No. 5. P. 592—599. DOI: 10.3103/S1067821220050065.

11. Biryukov V.P., Bazlova T.A. Experimental and computational determination of the wear resistant coefficient for coatings with nanodispersed carbide particles added by laser surfacing. Russ. J. Non-ferr. Met. 2020. Vol. 61. No. 6. P. 739—744. DOI: 10.3103/S1067821220060048.

12. Korobov Yu.S., Alwan H.L., Filippov M.A., Soboleva N.N., Alani I.A., Estemirova S.H., Makarov A.V. The effect of martensitic transformation on the cavitation erosion resistance of a TIG-deposited Fe—Cr—C—Al—Ti layer. Surf. Coat. Technol. 2021. Art. 127391. DOI: 10.1016/j.surfcoat.2021.127391.

13. Kumar R.K., Kamaraj M., Seetharamu S., Pramod T., Sampathkumaran P. Effect of spray particle velocity on cavitation erosion resistance characteristics of HVOF and HVAF processed 86WC—10Co4Cr hydro turbine coatings. J. Therm. Spray Technol. 2016. Vol. 25. P. 1217—1230. DOI: 10.1007/s11666-016-0427-3.

14. Alwan H.L., Korobov Yu.S., Soboleva N.N., Lezhnin N.V., Makarov A.V., Deviatiarov M.S. Study of cavitation erosion—corrosion resistance of thermally sprayed Ni— based coatings prepared by HVAF process. Solid State Phenom. 2020. Vol. 299. P. 893—901. DOI: 10.4028/www.scientific.net/SSP.299.893.

15. Wang Q., Tang Z., Cha L. Cavitation and sand slurry erosion resistances of WC—10Co—4Cr coatings. J. Mater. Eng. Perform. 2015. Vol. 24. P. 2435—2443. DOI: 10.1007/s11665-015-1496-z.

16. Wu Y., Hong S., Zhang J., Zhihua H., Wenmin G., Qian W., GaiE Li. Microstructure and cavitation erosion behavior of WC—Co—Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying. Int. J. Refract. Hard Met. 2012. Vol. 32. P. 21—26. DOI: 10.1016/j.ijrmhm.2012.01.002.

17. Toma D., Brandl W., Marginean G. Wear and corrosion behaviour of thermally sprayed cermet coatings. Surf. Coat. Technol. 2001. Vol. 138. P. 149—158. DOI:10.1016/S0257-8972(00)01141-5.

18. Berger L.-M. Binary WC- and Cr3C2-containing hardmetal compositions for thermally sprayed coatings. IOP Conf. Ser.: Mater. Sci. Eng. 2016. Vol. 118. P. 012010.

19. Ding Z-X., Chen W., Wang Q. Resistance of cavitation erosion of multimodal WC—12Co coatings sprayed by HVOF. J. Nonferr. Metal. Soc. 2011. Vol. 21. P. 2231—2236. DOI: 10.1016/S1003-6326(11)61000-5.

20. Hong S., Wu Y., Zhang J., Zheng Yu., Zheng Y., Lin J. Synergistic effect of ultrasonic cavitation erosion and corrosion of WC—CoCr and FeCrSiBMn coatings prepared by HVOF spraying. Ultrason Sonochem. 2016. Vol. 31. P. 563—569. DOI: 10.1016/j.ultsonch.2016.02.011.

21. Souza V.A.D. Neville A. Linking electrochemical corrosion behaviour and corrosion mechanisms of thermal spray cermet coatings (WC—CrNi and WC/CrC—CoCr). Mater. Sci. Eng. 2003. Vol. A352. P. 202—211. DOI:10.1016/S0921-5093(02)00888-2.

22. Espallargas N., Berget J., Guilemany J.M., Benedetti A.V., Suegama P.H. Cr3C2—NiCr and WC—Ni thermal spray coatings as alternatives to hard chromium for erosion— corrosion resistance. Surf. Coat. Technol. 2008. Vol. 202. P. 1405—1417. DOI:10.1016/j.surfcoat.2007.06.048.

23. Ding X., Cheng X.-D., Yuan C.-Q., Shi J., Ding Z.-X. Structure of micro-nano WC—10Co4Cr coating and cavitation erosion resistance in NaCl solution. Chin. J. Mech. Eng. 2017. Vol. 30. P. 1239—1247. DOI:10.1007/s10033-017-0162-9.

24. Shumyakov V.I., Korobov Yu.S., Alwan H.L., Lezhnin N.V., Makarov A.V., Deviatiarov M.S. Installation for cavitation erosion testing: Pat. No. 2710480 (Russia). Appl. No. 2018130210 (20.08.2018). Publ. 26.12.2019. Bull. No. 36 (In Russ.).

25. ASTM, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus. G 32 — 10. 2011. P. 1—19.

26. Zhang S., Gao G., Zhu H., Cai L., Jiang X., Lu S., Duan F., Dong W., Chai Y., Du M. In situ interfacial engineering of nickel tungsten carbide Janus structures for highly efficient overall water splitting. Sci. Bulletin. 2020. Vol. 65. P. 640—650. DOI: 10.1016/j.scib.2020.02.003.

27. Sugiyama K., Nakahama S., Hattori S., Nakano K. Slurry wear and cavitation erosion of thermal-sprayed cermets. Wear. 2005. Vol. 258. P. 768—775. DOI: 10.1016/j.wear.2004.09.006.


Review

For citations:


Alwan H.L., Makarov A.V., Soboleva N.N., Korobov Yu.S., Shumyakov V.I., Lezhnin N.V., Zavalishin V.A. Using the developed cavitation test to evaluate erosion resistance of cermet thermal sprayed coatings. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2021;(3):62-70. (In Russ.) https://doi.org/10.17073/1997-308X-2021-3-62-70

Views: 441


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)