Strength and fracture resistance of quartz fibers with polyimide coatings
https://doi.org/10.17073/1997-308X-2021-2-22-30
Abstract
Polyimide coatings currently provide the highest performance properties of quartz fibers. The purpose of this research is to determine the strength, hardness, dynamic fatigue, performance period and crack resistance of optical fibers with polyimide coatings. The strength limit of fibers determined by the method of axial stretching over the distance between capstans of 500 mm was 4.8–6.0 GPa at a loading speed of 10–500 mm/min. W. Weibull distribution curves were plotted in coordinates that relate the probability of failure to the strength, fiber length, and parameter describing the ultimate strength. The dynamic fatigue parameter n was found, which in physical sense corresponds to the slope tgα equal to 1/(1+n) in double logarithmic coordinates. Hardness and crack resistance values of quartz fibers were measured by indentation. Crack resistance K1c was calculated using the A. Niihara semi-empirical dependence, which connects the indentation size, radial crack length, and crack resistance. The initial crack length was calculated and the size of the characteristic defect was determined using scanning electron microscopy. Thermogravimetric analysis demonstrated that polyimide coated fibers maintain thermal stability up to 450 °С. The service life of optical fibers was determined based on the dynamic fatigue data, and it amounted to at least 25 years at a load of 0.2 GPa. The greater the difference between the lower strength level and the upper one in the stretch tests of fiber segments, the higher the distribution parameter m describing the ultimate strength of optical fibers. The values of this parameter are determined by the fiber quality: m = 50÷100 for coated fibers and m = 1÷5 for uncoated ones.
About the Authors
M. I. BulatovRussian Federation
Postgraduate student, Department of the metals science and heat treatment technologies of steel and high-strength alloys
614990, Russia, Perm, Komsomolsky pr., 29
A. A. Shatsov
Russian Federation
Dr. Sci. (Eng.), Prof., Department of the metals science and heat treatment technologies of steel and high-strength alloys
614990, Russia, Perm, Komsomolsky pr., 29
References
1. Delobelle B., Perreux D., Delobelle P. Failure of nano- structured optical fibers by femtosecond laser procedure as a strain safety-fuse sensor for composite material applications. Sensors and Actuators A: Physical. 2014. Vol. 210. P. 67—76. DOI: 10.1016/j.sna.2014.02.008.
2. Sumukh N.R, Srivastava S., Gowrishankar R. Non-reciprocal biasing for performance enhancement of the resonant fiber gyroscope with «Reflector» using In-line Faraday rotators: Design, analysis and characterization. Optical Fiber Technology. 2019. Vol 53. 2019. P. 1—8. DOI: 10.1016/j.yofte.2019.102038.
3. Overton B.J., Gooijer F., Krabsuis G. An optical fiber with advanced polyimide coating. In: Proceedings of the 61-th International Wire and Cable Symposium Providence. 2012. P. 321—328.
4. Lei H., Robert S.D., Ralph J.L., Stolov A.A., Jie Li. Mechanical properties of polyimide coated optical fibers at elevated temperatures. Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications. 2016. Vol. 9702. P. 1—8. DOI: 10.1117/12.2210957.
5. Lemaire P.J. Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases. Optical Eng. 1991. Vol. 30 (6). P. 780—789. DOI: 10.1117/12.55865.
6. Stolov A.A., Simoff D.A., Jie Li. Thermal stability of specialty optical fibers. J. Lightwave Technol. 2008. Vol. 26. P. 3443—3451. DOI: 10.1109/jlt.2008.925698.
7. Stolov A.A., Slyman B.E., Simoff D.A., Hokansson A.S., Allen R.S., Earnhardt J.P. Optical fibers with polyimide coatings for medical applications. Design and Quality for Biomedical Technologies. 2012. Vol. 8215. P. 1—10. DOI: 10.1117/12.916858.
8. Semjonov S.L., Sapozhnikov D.A., Erin D.Yu., Zabegaeva O.N., Kushtavkina I.A., Nishchev K.N., Vygodskii Ya.S., Dianov E.M. High temperature polyimide coating for optical fibers. Quantovaya Electronika. 2015. Vol. 45 (4). P. 330—332 (In Russ.).
9. Vinogradova S.V., Vasnev V.A., Vygodsky Ya.S. Cardiac polyheteroarylenes. Synthesis, properties and originality. Uspekhi khimii. 1996. Vol. 65. No. 3. P. 249—277 (In Russ.).
10. Kosolapov A.F., Plastinin E.A., Semjonov S.L., Bayminov B.A., Sapozhnikov D.A., Alekseeva D.D., Vygodskii Y.S. Advanced polyimide varnish for optical fiber coating fabrication. Bulletin of the Lebedev Physics Institute. 2017. Vol. 44. No. 6. P. 159—162. DOI: 10.3103/S1068335617060021.
11. France P.W., Dunn P.L., Reeve M.H. Plastic coating of glass fibers and its influence on strength. Fiber and Integrated Optics. 1979. Vol. 2. P. 267—286. DOI: 10.1080/01468037908202106.
12. Libowitz G. Mathematical foundations of the theory of destruction. Vol. 2. Moscow: Mir, 1975 (In Russ.).
13. Ioffe A.F. Semiconductor physics. Moscow: AN SSSR, 1957 (In Russ.).
14. Metclough A.J., Ebert L.J., Wright P.K., Klein M.J. Interfaces in metallic composites. Vol. 1. Composite materials. Moscow: Mir, 1978 (In Russ.).
15. Dyachenko A.A., Shushpanov O.E. Thermodynamic model of the destruction of quartz glass and optical fibers. Nelineinyi mir. 2009. Vol. 7. No. 4. P. 239—283 (In Russ.).
16. Volynsky A.L. The Rebinder effect in polymers. Priroda. 2006. No. 11. P. 11—20 (In Russ.).
17. Glaesemann G.S., Gulati S.T. Design methodology for the mechanical reliability of optical fiber. Optical Eng. 1991. Vol. 30. P. 709—715. DOI: 10.1117/12.55870.
18. Wiederhorn S.M. Influence of water vapor on crack propagation in soda-lime glass. J. Amer. Ceramic Soc. 1967. Vol. 50 (8). P. 407—414. DOI: 10.1111/j.11512916.1967.tb15145.x.
19. Hillig W.B. Sources of weakness and the ultimate strength of brittle amorphous solids. In: Modern aspects of the vitreous state (Ed. MacKenrie Y.D.). 1962. Vol. 2. P. 152—194.
20. Chean V., Robin E., Abdi R., Sangleboeuf J. Study of the mechanical behavior of the optical fiber by a marktracking method. Eur. Phys. J. Conf. 2010. Vol. 6. P. 1—8. DOI: 10.1051/epjconf/20100634002.
21. Weibull W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951. Vol. 18. P. 293—297.
22. Bogatyrev V.A., Bubnov M.M., Vechkanov N.N., Guryanov A.N., Semenov S.L. Durability of glass fiber optical fibers of large length. Trudy of the IOF RAS. Volokonnaya optika. 1987. Vol. 5. P. 60—72 (In Russ.).
23. Dipak R.B. Characterization of polyimide-coated optical fibers. Optical Eng. 1991. Vol. 30. No. 6. P. 772—775. DOI: 10.1117/12.55860.
24. Craig S.P., Duncan W.J., France P.W., Snodgas J.E. The strength and fatigue of large flaws in silica optical fiber. Proc. 8-th European Conf. on Optical Communication. 1982. P. 205—208.
25. Gogotsi G.A., Bashta A.V. The study of ceramics with the Vickers diamond pyramid. Problemy prochnosti. 1990. No. 9. P. 49—54 (In Russ.).
26. Wiederhorn S.M. Fracture surface energy of glass. J. Amer. Ceram. Soc. 1969. Vol. 52. P. 99—105. DOI: 10.1111/j.1151-2916.1969.tb13350.x.
27. Sebastian B., Kurt E.J., Hamad U.R., George M.P. Constitutive modeling of indentation cracking in fused silica. J. Amer. Ceram. Soc. 2017. P. 1—13. DOI: 10.1111/jace.14734.
28. Bulatov M.I., Azanova I.S., Kosolapov A.F., Smirnova A.N., Saranova I.D. Effect of Below-Freezing Temperature on Optical Loss of Polyimide-Coated Optical Fibers. Kratkie soobshcheniya po fizike FIAN. 2019. Vol. 46. No. 9. P. 9—13. DOI:10.3103/S1068335619090021 (In Russ.)
29. Akhmed B.B., Nishchev K.N., Pynenkov A.A., Moiseev N.V. Determination of the thermal stability of optical fibers. Zhurnal prikl. fiziki. 2017. No. 5. P. 82—86 (In Russ.).
30. Zhangwei Ma, Zhifeng Wang, Huanhuan Liu, Fufei Pang, Zhenyi Chen, Tigyun Wang. Tensile strength and failure behavior of bare single mode fibers. Optical Fiber Technol. 2019. No. 52. P. 1—5. DOI: 10.1016/j.yofte.2019.101966.
31. Vincenzo M.S., Diego P., Francesco S., Nadia G.B., Edoardo C., Giuseppe F., Daniel M. Mechanical properties of resorbable calcium-phosphate glass optical fiber and capillaries. J. Alloys Compd. 2019. No. 778. P. 410—417. DOI: 10.1016/j.jallcom.2018.11.033.
32. Biswas D.R. Optical fiber coatings for biomedical applications. Optical Eng. 1992. Vol. 31. P. 1400—1403. DOI: 10.1117/12.57701.
33. Melin G., Guitton P., Montron R., Gotter T., Robin T., Overton B., Rizzolo S., Girard S. Radiation resistant singlemode fiber with different coatings for sensing in high dose environments. IEEE Trans. Nucl. Sci. 2018. No. 7. P. 1657—1662. DOI: 10.1109/TNS.2018.2885820.
34. Ricardo E.M. Mechanical properties of weak optical fibers. Optical Fiber Reliability and Testing. 1999. No. 3848. P. 28—33.
Review
For citations:
Bulatov M.I., Shatsov A.A. Strength and fracture resistance of quartz fibers with polyimide coatings. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2021;(2):22-30. (In Russ.) https://doi.org/10.17073/1997-308X-2021-2-22-30