Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Possibilities of matrix lead alloy doping at non-gasostatic carbon-graphite impregnation

https://doi.org/10.17073/1997-308X-2021-2-41-48

Abstract

The study covers the process of carbon-graphite – lead composite formation by impregnating a porous AG-1500 scaffold with a lead melt containing 2.0 at.% Cu. The paper describes the kinetics of filling the carbon-graphite open porosity with molten metal with the continuously heated furnace and impregnating device. A feature of this method is the volumetric expansion of the lead alloy impregnating porous carbon-graphite. It is placed in a sealed steel container filled with lead by 2/3 of its volume with further vacuuming, melt adding and sealing. Then the device is placed in the furnace so that the lead-copper alloy, already having a temperature below the liquidus temperature by 20–30 °C when heated in the furnace to 900 °C, impregnates the carbon-graphite scaffold with further expansion at constant heating. Porous scaffold capillaries are filled as the melt temperature continuously increases. Once graphite-carbon impregnated with lead alloy is taken out, it was investigated using X-ray spectral and energy-dispersive analysis. It was found that the elements of the impregnating alloy were redistributed at the carbon-graphite scaffold/Pb alloy interface depending on its initial composition. During the carbon-graphite scaffold impregnation with the Pb–2%Сu alloy under a pressure of up to 5 MPa, copper redistribution occurs on its inner pore surface and the boundary with the alloy, which leads to the formation of an interphase layer containing 70 % Cu. The conducted research made it possible to obtain a composite with a copper content of 1.85 at.% in the impregnating Pb alloy at the interface with carbon graphite.

About the Author

V. A. Gulevsky
Volgograd State Technical University
Russian Federation

Cand. Sci. (Eng.), Associate professor, Department of foundry machinery and technology

400005, Russia, Volgograd, Lenina ave., 28)



References

1. Kostikov V.I., Eremeeva Zh.V., Slyuta D.A., Yaitsky D.L., Sharipzyanova G.Kh. Frictional properties of carboncarbon composite materials Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2008. No. 3. P. 52—55 (In Russ.).

2. Carbon-based sliding materials. GmbH, Germany: Schunk Kohlenstofftechnik. URL: https://www.schunkcarbontechnology.com/ru/ (accessed: 27.03.2021).

3. Sogabe T., Onishi Y., Inoue H., Okada O., Matsumoto T. Development of metal-impregnated carbon materials by using HIP. Rev. High Pressure Sci. Technol. 1997. Vol. 7. P. 1072—1074.

4. Gulevsky V.A., Antipov V.A., Vinogradov L.V., Kidalov N.A., Kolmakov A.G. Impregnation of carbon graphite with metal alloys. Volgograd: VSTU, 2017 (In Russ.).

5. Gulevskii V.A. Golovinov P.S., Kidalov N.A., Antipov V.I., Kolmakov A.G., Vinogradov L.V. Method of making composite materials: Pat. 2571295 (RF). 2015 (In Russ.).

6. Frenkel Ya.I. Kinetic theory of liquids. Leningrad: Nauka, 1975 (In Russ.).

7. Sotnikov G.V. Study of capillary impregnation for modeling real processes in peat systems. Zapiski gornogo instituta. 2003. No. 5. P. 85—87 (In Russ.).

8. Bashkatova S.T., Vinokurov V.A. Surface phenomena and dispersed systems in oil and gas technologies. Moscow: RGU nefti i gaza, 2005 (In Russ.).

9. Veinik A.I. A new system of thermodynamics of reversible and irreversible processes. Minsk: Vysshaya shkola, 1966 (In Russ.).

10. Novikova S.I. Thermal expansion of solids. Moscow: Nauka, 1974 (In Russ.).

11. Boyle-Marriott Law. URL: https://dic.academic.ru/dic.nsf/ntes (accessed: 21.06.2019) (In Russ.).

12. Wetting, capillary effect URL: https://ozlib.com/817825/tehnika/smachivanie_kapi l lyarnyy_effekt (accessed: 27.03.2021) (In Russ.).

13. Factsheets by Toyo Tanso, Ibiden, UCAR, POCO Graphite Inc., Ultra Carbon Corp., Great Lakes Carbon Corp. 1990—2004.

14. Poiseuille equation. URL :https://v-kosmose.com/fizika/uravnenie-puazeylya-i-vyazkost (accessed: 13.07.2019) (In Russ.).

15. Antonova N.M., Kulinich V.I., Dorofeev V.Yu. Adhesion strength of a composite coating with a polymer matrix based on sodium carboxymethyl cellulose with a metal filler of aluminum powder. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2008. No. 2. P. 12—16 (In Russ.).

16. Zinoviev V.E. Thermophysical properties of metals at high temperatures. Moscow: Metallurgiya, 1989 (In Russ.).

17. Andrizhievsky A.A. Mechanics of liquid and gas: А textbook. Minsk: BSTU, 2014 (In Russ.).

18. Beltyukov A.L., Ladyanov V.I., Shishmarin A.I. Viscosity of Fe—Si melts with silicon content up to 45 at %. Teplofizika vysokikh temperature. 2014. No. 2. P. 205—212 (In Russ.).

19. Seith W., Johren H., Wagner J., Metallkunde Z. Miscibility gaps in binary and ternary metallic systems in molten state. Z. Metallkunde. 1955. Bd. 46. S. 773—776.

20. Chakrabarti D.J., Laughlin D.E. The Cu—Pb (copper— lead) system. J. Phase Equilibr. 1984. Vol. 5. P. 503—510.

21. Hansen M., Anderko K. Structures of double alloys. Moscow: Metallurgizdat, 1962 (In Russ.).

22. Phase diagram of the Cu—Pb system. URL:http://www.himikatus.ru/ar t/phase-diagr1/Cu-Pb.php (accessed: 19.03.2019) (In Russ.).

23. Gulevsky V.A., Mukhin Yu.A., Zagrebin A.N. Matrix alloy for impregnation of the carbon frame. Izvestiya VolgGTU. 2009. No. 11. P. 81—84 (In Russ.).

24. Electrochemical activity of metals. URL: https://dic.academic.ru/dic.nsf/ruwiki/112845 (accessed: 19.05.2019) (In Russ.).


Review

For citations:


Gulevsky V.A. Possibilities of matrix lead alloy doping at non-gasostatic carbon-graphite impregnation. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2021;(2):41-48. (In Russ.) https://doi.org/10.17073/1997-308X-2021-2-41-48

Views: 485


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)