Thermally coupled SHS processes in (Ni + Al)/(Co + Ti)/(Ni + Al) layered system: experimental and theoretical study
https://doi.org/10.17073/1997-308X-2021-4-20-29
Abstract
The paper focuses on the theoretical and experimental study of the mechanisms of reaction mixture combustion in the ≪chemical oven≫ mode in a three-layer Ni–Al/Ti–Co/Ni–Al sample. Experimental studies were carried out in a reactor in an argon atmosphere at atmospheric pressure and an ambient temperature of 298 K on rectangular samples pressed from Ni–Al and Ti–Co powder mixtures in the form of a three-layer package. The Ti–Co acceptor layer was in the middle of the sample, and the Ni–Al donor layer was outside. The acceptor layer thickness was varied from 4.3 to 13 mm, while the donor layer thickness (4.7 mm) remained constant. It was found that as the acceptor layer thickness increases, the combustion wave front propagation velocity and reaction initiation temperature decrease, and the maximum temperature in the front remains constant and equal to the melting point of the final product. The time of acceptor layer heating before the reaction increases. The acceptor mixture reaction proceeds in the thermal explosion mode when the thickness of the acceptor layer exceeds that of the donor one. Maximum temperature in this case is higher than the melting point of the final product. The inner layer synthesis modes change with an increase in the acceptor layer thickness: stationary – pulsating – extinction. The mathematical model of the three-layer sample high-temperature synthesis in dimensional variables is constructed taking into account heat transfer with the environment. As a result of experimental studies and numerical calculations, the critical thickness of the inner layer was found to be 15 mm, at which the inner layer combustion becomes impossible at fixed sizes of donor layers. Critical conditions for the combustion wave propagation along the acceptor layer are weakly dependent on the external heating source. The experimental technique and mathematical model of the layered system combustion can be used to assess the critical conditions for the metal composite synthesis in the frontal combustion mode.
About the Authors
R. M. GabbasovRussian Federation
Cand. Sci. (Eng.), researcher of the Department of structural macrokinetics
634055, Tomsk, Academicheskii pr., 10/4
V. D. Kitler
Russian Federation
Cand. Sci. (Phys.-Math.), researcher of the Department of structural macrokinetics
634055, Tomsk, Academicheskii pr., 10/4
V. G. Prokof’ev
Russian Federation
Dr. Sci. (Phys.-Math.), leading researcher of the Department of structural macrokinetics; prof. of the Department of mathematical physics
634055, Tomsk, Academicheskii pr., 10/4
634050, Russia, Tomsk, Lenin pr., 36
A. M. Shul’pekov
Russian Federation
Cand. Sci. (Eng.), leading researcher of the Department of structural macrokinetics
634055, Tomsk, Academicheskii pr., 10/4
References
1. Ksandopulo G.I., Baidel’dinova A.N. Combustion in a system of conjugated layers and high-temperature synthesis of materials. Russ. J. Appl. Chem. 2004. Vol. 77. No. 3. P. 364—368.
2. Cirakoglu M., Bhaduri S., Bhaduri S.B. Combustion synthesis processing of functionally graded materials in the Ti—B binary system. J. Alloys Compd. 2002. Vol. 347. P. 259—265.
3. Chen S.P., Meng Q.S., Zhao J.F., Munir Z.A. Synthesis and characterization of TiB2—Ni—Ni3Al—CrNi alloy graded material by field-activated combustion. J. Alloys Compd. 2009. Vol. 476. P. 889—893.
4. Sytschev A.E., Vrel D., Boyarchenko O.D., Khrenov D.S., Sachkova N.V., Kovalev I.D. SHS joining by thermal explosion in (Ni + Al)/Nb/(Ni + Al + Nb) sandwiches: Microstructure of transition zone. Int. J. SHS. 2017. Vol. 26. No. 1. P. 49—53.
5. Linde A.V., Studenikin I.A., Kondakov A.A., Grachev V.V. Thermally coupled SHS processes in layered (Fe2O3 + + 2Al)/(Ti + Al)/(Fe2O3 + 2Al) structures: An experimental study. Comb. Flame. 2019. Vol. 208. P. 364—368.
6. Levashov E.A., Akulinin P.V., Sorokin N.M., Sviridova T.A., Hosomi S., Oh’yanagi M., Koizumi S. Self-propagating high-temperature synthesis of diamond-containing functional gradient materials with a ceramic matrix based on TiB2—TiN and Ti5Si3—TiN. Fizika metallov i metallovedenie. 2004. Vol. 97. No. 1. P. 46—54 (In Russ.).
7. Shcherbakov V.A., Gryadunov A.N., Alymov M.I. Synthesis and characteristics of B4C—TiB2 composite. Adv. Mater. Technol. 2016. No. 4. P. 16—21.
8. Alymov M.I., Seplyarskii B.S., Kochetkov R.A., Lisina T.G. A new approach to conducting thermally coupled processes using the example of a granular mixture (Ni + + Al) — (Ti + C)]. Doklady RAN. 2019. Vol. 487. No. 1. P. 45—48 (In Russ.).
9. Levashov E.A., Larikhin D.V., Shtanskii D.V., Rogachev A.S., Grigoryan A.E., Mur J.J. Self-propagating high-temperature synthesis of functional-gradient targets with a ceramic working layer TiB2—TiN and Ti5Si3—TiN. Fizika metallov i metallovedenie. 2002. Vol. 94. No. 5. P. 56—66 (In Russ.).
10. Merzhanov A.G. Thermally coupled processes of selfpropagating high-temperature synthesis. Doklady RAN. 2010. Vol. 434. No. 4. P. 489—492 (In Russ.).
11. Kharatyan S.L., Merzhanov A.G. Coupled SHS reactions as a useful tool for synthesis of materials: An overview. Int. J. SHS. 2012. Vol. 21. No. 1. P. 59—73.
12. Sytschev A.E., Vrel D., Boyarchenko O.D., Roshchupkin D.V., Sachkov N.V. Combustion synthesis in bi-layered (Ti— Al)/(Ni—Al) system. J. Mater. Process. Technol. 2017. Vol. 240. P. 60—67.
13. Khina B.B., Formanek B. Modeling heterogeneous interaction during SHS in the Ni—Al system: A phaseformation-mechanism map. Int. J. SHS. 2007. Vol. 16. No. 2. P. 51—61.
14. Pisklov A.V., Prokof’ev V.G., Smolyakov V.K. Gasless combustion of a layer stack under non-adiabatic conditions. Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy). 2006. No. 5. P. 102—108 (In Russ.).
15. Prokof’ev V.G., Smolyakov V.K. On the theory of self-propagating high-temperature synthesis in layered systems. Combust. Explos. Shock Waves. 2012. Vol. 48. No. 5. P. 636—641.
16. Prokof’ev V.G., Smolyakov V.K. Gasless combustion in two-layer structures: a theoretical model. Int. J. SHS. 2013. Vol. 22. No. 1. P. 5—10.
17. Prokof’ev V.G., Smolyakov V.K. Gasless combustion of a system of thermally coupled layers. Combust. Explos. Shock Waves. 2016. Vol. 52. No. 1. P. 62—66.
18. Miroshnichenko T.P., Yakupov E.O., Gubernov V.V., Kurdyumov V.N., Polezhaev A.A. Combustion wave in a two-layer solid fuel system. Appl. Mathem. Model. 2020. Vol. 77. No. 2. P. 1082—1094.
19. Gabbasov R.M., Kitler V.D., Prokof’ev V.G., Shulpekov A.M. Layered NiAl/Cu/NiAl composite by SHS in a mode of frontal combustion. Int. J. SHS. 2020. Vol. 29. No. 2. P. 104—107.
20. Itin V.I., Bratchikov A.D., Merzhanov A.G., Doronin V.N. Relation between combustion parameters and phase diagram for the systems Ti—Co and Ti—Ni. Combust. Explos. Shock Waves. 1982. Vol. 18. No. 5. P. 536—539.
21. Rogachev A.S., Mukasyan A.S. Experimental verification of discrete models for combustion of microheterogeneous compositions forming condensed combustion products (Review). Combust. Explos. Shock Waves. 2015. Vol. 51. No. 1. P. 53—62.
22. Prokof’ev V.G., Smolyakov V.K. Thermocapillary сonvection in a gasless combustion wave. Combust. Explos. Shock Waves. 2019. Vol. 55. No. 1. P. 89—96.
23. Varma A., Rogachev A.S., Mukasyan A.S., Hwang S. Combustion synthesis of advanced materials: principles and applications. Adv. Chem. Eng. 1998. Vol. 24. P. 79—26.
24. Shiljaev M.I., Borzykh V.E., Dorokhov A.R. Laser ignition of nickel-aluminum powder systems. Combust. Explos. Shock Waves. 1994. Vol. 30. No. 2. P. 147—150.
25. Rogachev A.S. Macrokinetics of gasless combustion: Old problems and new approaches. Int. J. SHS. 1997. Vol. 6. No. 2. P. 215—242.
Review
For citations:
Gabbasov R.M., Kitler V.D., Prokof’ev V.G., Shul’pekov A.M. Thermally coupled SHS processes in (Ni + Al)/(Co + Ti)/(Ni + Al) layered system: experimental and theoretical study. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2021;(4):20-29. (In Russ.) https://doi.org/10.17073/1997-308X-2021-4-20-29