Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Exothermic synthesis of binary solid solutions based on hafnium and zirconium carbides

https://doi.org/10.17073/1997-308X-2021-4-30-37

Abstract

The paper presents the results of an experimental study into the possibility of producing ultra-high temperature ceramics  constituting solid solutions of HfC and ZrC carbides by the single-stage electro-thermal explosion (ETE) method under pressure.  Adiabatic flame temperature and phase composition of the equilibrium final product were calculated based on thermodynamic  data. It was shown that when the ZrC content in the final product is less than 20 wt.%, adiabatic flame temperature reaches 3800– 3900 K, and the combustion product contains hafnium and zirconium carbides. The effect of mechanical activation modes in an  AGO-2 planetary centrifugal mill used for a reaction mixture containing Hf, Zr and C powders on its properties, phase composition  formation and the microstructure of carbide solid solutions was studied. It was shown that high-energy mixing in hexane leads to  the destruction of the crystal structure of Hf and Zr particles and the formation of amorphous composite particles. The synthesized  samples of ultra-high temperature ceramics were studied by X-ray phase and microstructure analyzes. It was shown that exothermic  synthesis leads to the formation of single-phase solid solutions of HfC and ZrC carbides with the average particle size of 0.2–1.5 μm.  The residual porosity of the binary carbides obtained is 10–12 %. It was found that, despite the high temperature of sample heating  during ETE under pressure, the particle size of the resulting solid solutions is significantly (by an order of magnitude) smaller than  the particle size of similar complex carbides (20–50 μm) obtained by other methods (SPS and hot pressing). This is associated with  the rapidity of the exothermic interaction of the reagents (10–50 ms) during ETE.

About the Authors

V. A. Shcherbakov
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Dr. Sci. (Phys-Math.), head of the Laboratory of energy stimulation of physical and chemical processes

142432, Moscow region, Noginsk district, Chernogolovka, Academician Osip’yan str., 8



A. N. Gryadunov
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Cand. Sci. (Phys-Math.), leading researcher of the Laboratory of energy stimulation of physical and chemical processes

142432, Moscow region, Noginsk district, Chernogolovka, Academician Osip’yan str., 8



M. I. Alymov
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Dr. Sci. (Eng.), prof., corresponding member of the Russian Academy of Sciences, director

142432, Moscow region, Noginsk district, Chernogolovka, Academician Osip’yan str., 8



References

1. Chandran B.S.N., Devapal D., Veedu P.P. Synthesis of ultra high temperature ceramic zirconium carbide for space applications. Trans. Indian Natl. Acad. Eng. 2021. Vol. 6. Iss. 1. P. 57—64. DOI: https://doi.org/10.1007/s41403-020-00176-w.

2. Fahrenholtz W.G., Hilmas G.E. Ultra-high temperature ceramics: materials for extreme environments. Scripta Mater. 2017. Vol. 129. P. 94—99. DOI: https://doi.org/10.1016/j.scriptamat.2016.10.018.

3. Sani E., Mercatelli L., Meucci M., Balbo A., Silvestroni L., Sciti D. Compositional dependence of optical properties of zirconium. hafnium and tantalum carbides for solar absorber applications. Sol. Energy. 2016. Vol. 131. P. 199— 207. DOI: https://doi.org/10.1016/j.solener.2016.02.045.

4. Sani E., Mercatelli L., Sans J.-L., Silvestroni L., Sciti D. Porous and dense hafnium and zirconium ultra-high temperature ceramics for solar receivers. Opt. Mater. 2013. Vol. 36. Iss. 2. P. 163—168. DOI: https://doi.org/10.1016/j.optmat.2013.08.020.

5. Andrievskii R.A., Strel’nikova N.S., Poltoratskii N.I., Kharkhardin E.D., Smirnov V.S. Melting point in systems ZrC—HfC, TaC—ZrC, TaC—HfC. Powder Metall. Met. Ceram. 1967. Vol. 6. Iss. 1. P. 65—67. DOI: https://doi.org/10.1007/BF00773385.

6. Ghaffari S.A., Faghihi-Sani M.A., Golestani-Fard F., Nojabayy M. Diffusion and solid solution formation between the binary carbides of TaC, HfC and ZrC. Int. J. Refract. Met. Hard Mater. 2013. Vol. 41. P. 180—184. DOI: https://doi.org/10.1016/j.ijrmhm.2013.03.009.

7. Samsonov G.V., Vinitskii I.M. Handbook of refractory compounds. Moscow: Metallurgiya, 1976 (In Russ.).

8. Shabalin I.L. Ultra-high themperature materials II. Refractory carbides I (Ta, Hf, Nb and Zr Carbides). Springer Nature B.V., 2019. P. 145—248, 423—675. DOI: https://doi.org/10.1007/978-94-024-1302-1.

9. Smith C.J., Ross M.A., De Leon N., Weinberger C.R., Thompson G.B. Ultra-high temperature deformation in TaC and HfC. J. Eur. Ceram. Soc. 2018. Vol. 38. Iss. 16. P. 5319—5332. DOI: https://doi.org/10.1016/j.jeurceramsoc.2018.07.017.

10. Kurbatkina V.V., Patsera E.I., Levashov E.A., Timofeev A.N. Self-propagating high-temperature synthesis of singlephase binary tantalum-hafnium carbide (Ta,Hf)C and its consolidation by hot pressing and spark plasma sintering. Ceram. Int.. 2018. Vol. 44. Iss. 4. P. 4320—4329. DOI: https://doi.org/10.1016/j.ceramint.2017.12.024.

11. Sun S.-K., Zhang G.-J., Wu W.-W., Liu J.-X., Suzuki T., Sakka Y. Reactive spark plasma sintering of ZrC and HfC ceramics with fine microstructures. Scripta Mater. 2013. Vol. 69. Iss. 2. P. 139—142. DOI: https://doi.org/10.1016/j.scriptamat.2013.02.017.

12. Kurbatkina V.V., Patsera E.I., Levashov E.A., Vorotilo S. SHS processing and consolidation of Ta—Ti—C, Ta— Zr—C, and Ta—Hf—C carbides for ultra-high-temperatures application. Adv. Eng. Mater. 2018. Vol. 20. Iss. 8. Art. 1701075. DOI: https://doi.org/10.1002/adem.201701075.

13. Patsera E.I., Levashov E.A., Kurbatkina V.V., Kovalev D.Y. Production of ultra-high temperature carbide (Ta,Zr)C by self-propagating high-temperature synthesis of mechanically activated mixtures. Ceram. Int. 2015. Vol. 41(7). P. 8885—8893. DOI: https://doi.org/10.1016/j.ceramint.2015.03.146.

14. Tsai M.H., Yeh J.-W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014. Vol. 2. Iss. 3. P. 107—123. DOI: https://doi.org/10.1080/21663831.2014.912690.

15. Zhang R-Z., Reece M.J. Review of high entropy ceramics: design. synthesis. structure and properties. J. Mater. Chem. A. 2019. Vol. 7. P. 22148—22162. DOI: https://doi.org/10.1039/C9TA05698J.

16. Castle E., Csanádi T., Grasso S., Dusza J., Reece M. Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep. 2018. Vol. 8(1). P. 8609. DOI: https://doi.org/10.1038/s41598-018-26827-1.

17. Dusza J., Švec P., Girman V., Sedlák R., Castle E.G., Csanádi T., Kovalčíkova A., Reece M.J. Microstructure of (Hf—Ta—Zr—Nb)C high-entropy carbide at micro and nano/atomic level. J. Eur. Ceram. Soc. 2018. Vol. 38. Iss. 12. P. 4303—4307. DOI: https://doi.org/10.1016/j.jeurceramsoc.2018.05.006.

18. Shcherbakov V.A., Gryadunov A.N., Vadchenko S.G., Alymov M.I. Exothermic synthesis and consolidation of single-phase ultra-high-temperature composite Ta4ZrC5. Dokl. Chem. 2019. Vol. 488. No. 1. P. 242—245. DOI: https://doi.org/10.1134/S0012500819090027.

19. Lubnin A.N., Dorofeev G.A., Nikonova R.M., Mukhgalin V.V., Lad’yanov V.I. Stacking faults and mechanisms straininduced transformations of HCP metals (Ti, Mg) during mechanical activation in liquid hydrocarbons. Phys. Solid State. 2017. Vol. 59. No. 11. P. 2226—2238. DOI: https://doi.org/10.1134/S1063783417110191.

20. Dorofeev G.A., Lad’yanov V.I., Lubnin A.N., Mukhgalin V.V., Kanunnikova O.M., Mikhailova S.S., Aksenova V.V. Mechanochemical interaction of titanium powder with organic liquids. Int. J. Hydrogen Energy. 2014. Vol. 39. Iss. 18. P. 9690—9699. DOI: https://doi.org/10.1016/j.ijhydene.2014.04.101.

21. Shiryaev A.A. Thermodynamics of SHS: An advanced approach. Int. J. SHS. 1995. Vol. 4. No. 4. P. 351—362.

22. Dorofeev G.A., Lubnin A.N., Lad’yanov V.I., Mukhgalin V.V., Puskkarev B.E. Structural and phase transformations during ball milling of titanium in medium of liquid hydrocarbons. Phys. Met. Metallogr. 2014. Vol. 115. Iss. 2. P. 157— 168. DOI: https://doi.org/10.1134/S0031918X14020057.

23. Demirskyi D., Borodianska H., Suzuki T.S., Sakka Y., Yoshimi K., Vasylkiv O. High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC. Scripta Mater. 2019. Vol. 164. P. 12—16. DOI: https://doi.org/10.1016/j.scriptamat.2019.01.024.


Review

For citations:


Shcherbakov V.A., Gryadunov A.N., Alymov M.I. Exothermic synthesis of binary solid solutions based on hafnium and zirconium carbides. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2021;(4):30-37. (In Russ.) https://doi.org/10.17073/1997-308X-2021-4-30-37

Views: 440


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)