Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Structure and wear resistance of coatings produced by the short-pulse laser alloying of titanium carbohydride-based mechanocomposites

https://doi.org/10.17073/1997-308X-2021-4-46-56

Abstract

The study covers the phase composition, morphology and properties of coatings deposited on steel by means of short pulse selective laser alloying of titanium carbohydride-based mechanocomposites. Mechanocomposites were fabricated by milling of Ti and Ti–Cu powders in a liquid hydrocarbon environment. The synthesized mechanocomposites and fabricated coatings are investigated by X-ray diffraction, scanning electron microscopy and optical microscopy. The phase composition of mechanocomposites is represented by titanium carbohydride phase with a size of powder particles ranging from 2 to 30 μm for powders without copper, and from 1 to 10 μm for copper-containing powders. Coatings fabricated from powder mechanocomposites have a gradient structure. The Ti(C,H) powder coating contains 48 vol.% of the titanium carbide phase in a shell of Fe–Ti intermetallic compounds. The Ti(C,H)–Cu powder coating contains 85 vol.% of titanium carbide inclusions surrounded by Ti(Fe,Cu) and CuTi2 phases. Round-shaped carbide inclusions formed have a size of 50 to 200 nm, and dendritic ones are up to 5 μm. Coatings have a microhardness of 10 GPa and 8 GPa for compositions without and with copper, respectively. Coatings were tested for wear resistance under the conditions of dry friction in pairs with the balls made of steel and VK6 tungsten carbide alloy. Coefficients of friction for both coating types are 0.16–0.3 with the ball made of VK6 tungsten carbide alloy and 0.2–0.4 with the ball made of hardened steel. Coatings almost do not wear out under the counterbody load of 10 N and testing time of 20 min.

About the Authors

M. A. Eryomina
Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences (UdmFRC UB RAS)
Russian Federation

Cand. Sci. (Phys.-Math.), senior researcher of the Department of the physics and chemistry of nanomaterials of the Physical-Technical Institute

426067  Izhevsk, Baramzinoi str., 34



S. F. Lomayeva
Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences (UdmFRC UB RAS)
Russian Federation

Dr. Sci. (Phys.-Math.), senior researcher, chief researcher of the Department of the physics and chemistry of nanomaterials

426067 Izhevsk, Baramzinoi str., 34



E. V. Kharanzhevskiy
Udmurt State University
Russian Federation

Dr. Sci. (Eng.), prof., head of the laboratory

426034 Izhevsk, Universitetskaya str., 1



References

1. Chen Y., Wang H.M. Microstructure and wear resistance of a laser clad TiC reinforced nickel aluminides matrix composite coating. Mater. Sci. Eng. A. 2004. Vol. 368. P. 80—87. DOI: 10.1016/j.msea.2003.09.104.

2. Emamian A. In-situ TiC—Fe deposition on mild steel using a laser cladding process: Ph.D. thesis. Ontario, Canada: University of Waterloo, 2011. https://uwspace.uwaterloo.ca/bitstream/handle/10012/6148/Emamian_Ali.pdf;sequence=1.

3. Mahmoud E.R.I. Characterizations of 304 stainless steel laser cladded with titanium carbide particles. Adv. Product. Eng. Manag. 2015. Vol. 10. P. 115—124. DOI: 10.14743/apem2015.3.196.

4. Qiao H., Li Q.-t., Fu H.-g., Lei Y.-p. Microstructure and micro-hardness of in situ synthesized TiC particles reinforced Fe-based alloy composite coating by laser cladding. Mat.-Wiss. Werkstofftech. 2014. Vol. 45. P. 85— 90. DOI: 10.1002/mawe.201400188.

5. Razavi M., Rahimipour M.R., Ganji M., Ganjali M., Gangali M. In situ deposition of Fe—TiC nanocomposite on steel by laser cladding. Surf. Rev. Lett. 2017. Vol. 24. P. 1750080-1—1750080-9. DOI: 10.1142/S0218625X17500809.

6. Sampedro J., Pérez I., Carcel B., Ramos J.A., Amigó V. Laser cladding of TiC for better titanium components. Phys. Procedia. 2011. Vol. 12. P. 313—322. DOI: 10.1016/j.phpro.2011.03.040.

7. Sušnik J., Grum J., Šturm R. Effect of pulse laser energy density on TiC cladding of aluminium substrate. Tehnički Vjesnik. 2015. Vol. 22. P. 1553—1560. DOI: 10.17559/TV-20150221215735.

8. Techel A., Berger L.-M., Nowotny S. Microstructure of advanced TiC-based coatings prepared by laser cladding. J. Therm. Spray Technol. 2007. Vol. 16. P. 374—380. DOI: 10.1007/s11666-007-9045-4.

9. Wu X. Microstructural characteristics of TiC-reinforced composite coating produced by laser syntheses. J. Mater. Res. 1999. Vol. 14. P. 2704—2707. DOI: 10.1557/JMR.1999.0362.

10. Yamaguchi T., Hagino H., Michiyama Y., Nakahira A. Sliding wear properties of Ti/TiC surface composite layer formed by laser alloying. Mater. Trans. 2015. Vol. 56. P. 361—366. DOI: 10.2320/matertrans.M2014330.

11. Yang S., Liu W., Zhong M., Wang Z. TiC reinforced composite coating produce by powder feeding laser cladding. Mater. Lett. 2004. Vol. 58. P. 2958—2962. DOI: 10.1016/j.matlet.2004.03.051.

12. Marants A.V., Sentyurina Zh.A., Yadroitsev I.A., Yadroitseva I.A., Narva V.K., Smurov I.Yu. Comparison of properties of steel-TiC materials produced by laser process and powder metallurgy. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Powder Metallurgy аnd Functional Coatings). 2013. No. 1. P. 22—26 (In Russ.).

13. Narva V.K., Marants A.V., Sentyurina Zh.A. Heat treatment of steel—TiC composite materials produced by overlay laser welding. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Powder Metallurgy аnd Functional Coatings). 2013. No. 4. P. 3—7 (In Russ.).

14. Nagumo M., Suzuki T., Tsuchida K. Metastable states during reaction milling of hcp transition metals with hydrocarbon. Mater. Sci. Forum. 1996. Vol. 225. P. 581— 586. DOI: 10.4028/www.scientific.net/MSF.225-227.581.

15. Eremina M.A., Lomaeva S.F., Burnyshev I.N., Kalyuzhnyi D.G., Konygin G.N. Titanium carbohydride synthesis by mechanical activation in liquid hydrocarbon. Russ. J. Inorgan. Chem. 2018. Vol. 63. P. 1274—1282. DOI: 10.1134/S0036023618100066.

16. Eremina M.A., Lomaeva S.F., Burnyshev I.N., Kalyuzhnyi D.G. Mechanosynthesis of precursors for TiC—Cu cermets. Russ. Phys. J. 2018. Vol. 60. P. 2155—2163. DOI: 10.1007/s11182-018-1340-7.

17. Eryomina M.A., Lomayeva S.F. Composites prepared by multistage wet ball milling of Ti and Cu powders: Phase composition and effect of surfactant addition. Adv. Powder Technol. 2020. Vol. 31. P. 1789—1795. DOI: 10.1016/j.apt.2020.02.014.

18. Renaudin G., Yvon K., Dolukhanyan S.K., Aghajanyan N.N., Shekhtman V.Sh. Crystal structures and thermal properties of titanium carbo-deuterides as prepared by combustion synthesis. J. Alloys Compd. 2003. Vol. 356—357. P. 120—127. DOI: 10.1016/S0925-8388(03)00107-5.

19. Khidirov I. Neutron diffraction study of hydrogen thermoemission phenomenon from powder crystals. In: Neutron Diffraction. Ed. Prof. Irisali Khidirov. InTech, 2012. DOI: 10.5772/37597.

20. Dolukhanyan S.K., Aghajanyan N.N. Receiving of compact carbides and carbohydrides based on titanium and vanadium. In: Carbon nanomaterials in clean energy hydrogen systems. NATO Science for Peace and Security. Series C: Environmental Security. Ed. B. Baranowski, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, A. Veziroglu. Dordrecht: Springer, 2008. DOI: 10.1007/978-1-4020-8898-8.

21. Sivkov A., Shanenkov I., Pak A.Ya., Gerasimov D.Yu., Shanenkova Yu. Deposition of a TiC/Ti coating with a strong substrate adhesion using a high-speed plasma jet. Surf. Coat. Technol. 2016. Vol. 291. P. 1—6. DOI: 10.1016/j.surfcoat.2016.02.022.

22. Dong H. Tribological properties of titanium-based alloys. In: Surface engineering of light alloys. Aluminium, magnesium and titanium alloys. Oxford: Woodhead Publishing, Series in Metals and Surface Engineering, 2010. P. 58— 80. DOI: 10.1533/9781845699451.1.58.

23. Blinkov I.V., Volkhonskii A.O., Laptev A.I., Sviridova T.A., Tabachkova N.Yu., Belov D.S., Ershova A.V. Ceramic-metallic (TiN—Cu) nanostructural ion-plasma vacuum-arc coatings of cutting carbide tools. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Powder Metallurgy аnd Functional Coatings). 2013. No. 2. P. 54—59 (In Russ.).

24. Kharanzhevskiy E., Reshetnikov S. Chromium oxide dissolution in steels via short pulse laser processing. Appl. Phys. A. 2014. Vol. 115. P. 1469—1477. DOI: 10.1007/s00339-013-8064-x.

25. Kostenkov S.N., Kharanzhevskii E.V., Krivilev M.D. Determination of characteristics of laser radiation interaction with nanocomposite powder materials. Phys. Met. Metallogr. 2012. Vol. 113. P. 93—97. DOI: 10.1134/S0031918X12010061.

26. Chu Q., Li J., Tong X.W., Xu S., Zhang M., Yan C. Nanoindentation and microstructure analysis of Ti/Fe dissimilar joint. Mater. Lett. 2019. Vol. 238. P. 98—101. DOI: 10.1016/j.matlet.2018.11.152.

27. Buckley D.H. Surface effects in adhesion, friction, wear, and lubrication. Amsterdam — Oxford — New York: Elsevier Sci. Publish. Comp., 1981. P. 262. https://www.sciencedirect.com/bookseries/tribology-series/vol/5/suppl/C.


Review

For citations:


Eryomina M.A., Lomayeva S.F., Kharanzhevskiy E.V. Structure and wear resistance of coatings produced by the short-pulse laser alloying of titanium carbohydride-based mechanocomposites. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2021;(4):46-56. (In Russ.) https://doi.org/10.17073/1997-308X-2021-4-46-56

Views: 520


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)