Effect of the structure and morphology of Ni-based porous deposits on their electrocatalytic activity towards hydrogen evolution reaction
https://doi.org/10.17073/1997-308X-2021-4-57-67
Abstract
Porous nickel and nickel-cobalt alloy deposits were obtained by electrodeposition on a dynamic hydrogen bubble template. Deposition was carried out from chloride electrolytes in a galvanostatic mode at a current density of 0.3 A/cm2. The porosity of the obtained deposits is associated with the macro- and micropores. It was found that the nickel and nickel-cobalt alloy deposits feature by different porous layer structures. In case of nickel, a typical foam structure is formed, while the Ni–Co alloy deposit morphology is more like loose (powder) metals. The total porosity of the obtained structures calculated based on experimental data decreased with the deposit thickness: from 0.4 to 0.1 for nickel foams, and from 0.9 to 0.8 for the Ni–Co deposit. It was shown that the dependences of the macropore number and the fraction of the surface occupied by them can be approximated by lognormal distribution. The agreement between the experimental values and values calculated by approximating equations indicates the stochastic nature of the macropore system formation. The catalytic properties of the obtained porous deposits toward the hydrogen evolution reaction in alkali were investigated. It was found that the decrease in the hydrogen evolution potential in comparison with a smooth electrode reaches 370 mV for nickel foams, and 440 mV for porous Ni–Co alloy deposits. However, the high porosity of the Ni–Co alloy caused poor adhesion of the deposit to the substrate; therefore, the porous Ni–Co deposit cannot be used without further strengthening. The dependences of the depolarization value during hydrogen evolution on the average diameter of pores, their number, and the macropore fraction were analyzed. Optimal properties of foams that reduce the potential of hydrogen evolution in alkali are as follows: pore diameters from 30 to 50 μm and their quantity from 50 to 100 pcs/mm2.
Keywords
About the Authors
T. S. TrofimovaRussian Federation
research assistant of scientific laboratory of electrochemical devices and materials, Institute of Chemical Engineering (ICE)
620002 Ekaterinburg, Mira str., 19
A. B. Darintseva
Russian Federation
Cand. Sci. (Chem.), assistant prof. of the Technology of Electrochemical Manufactures Department (TEM), ICE
620002 Ekaterinburg, Mira str., 19
T. N. Ostanina
Russian Federation
Dr. Sci. (Chem.), prof. of the Department of TEM, ICE
620002 Ekaterinburg, Mira str., 19
V. M. Rudoi
Russian Federation
Dr. Sci. (Chem.), рrof. of the Department of TEM, ICE
620002 Ekaterinburg, Mira str., 19
I. E. Il’ina
Russian Federation
master’s degree student of the Department of TEM, ICE
620002 Ekaterinburg, Mira str., 19
References
1. Egorov V., O’Dwyer C. Architected porous metals in electrochemical energy storage. Curr. Opin. Electrochem. 2020. Vol. 21. P. 201—208. https://doi.org/10.1016/j.coelec.2020.02.011.
2. Davydov A.D., Volgin V.M. Template electroodeposition of metals (review). Elektrokhimiya. 2016. Vol. 52. No. 9. P. 905—933 (In Russ.).
3. Lai M., Riley D.J. Templated electrosynthesis of nanomaterials and porous structures. J. Colloid Interface Sci. 2008. Vol. 323. Iss. 2. P. 203—212. https://doi.org/10.1016/j.jcis.2008.04.054.
4. Zankowski S.P, Vereecken P.M. Electrochemical determination of porosity and surface area of thin films of interconnected nickel nanowires. J. Electrochem. Soc. 2019. Vol. 166. No. 6. P. 227—235. https://doi.org/10.1149/2.0311906jes.
5. Meng X., Song Y., Shu T. Morphology control and optical characterization of three-dimensional ordered macroporous Cu films from template-assisted electrodeposition. J. Porous Mater. 2020. Vol. 27. P. 1069— 1076. https://doi.org/10.1007/s10934-020-00883-3.
6. Plowman B.J., Jones L.A., Bhargava S.K. Building with bubbles: The formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition. Chem. Commun. 2015. Vol. 51. P. 4331—4346. https://doi.org/10.1039/c4cc06638c.
7. Nikolić N.D., Branković G., Pavlović M.G. Effect of the electrolysis regime on the structural characteristics of honeycomb-like electrodes. Macedon. J. Chem. Chem. Eng. 2013. Vol. 32. P. 79—87. https://doi.org/10.20450/mjcce.2013.112.
8. Zhang H., Ye Y., Shen R., Ru C., Hu Y. Effect of bubble behavior on the morphology of foamed porous copper prepared via electrodeposition. J. Electrochem. Soc. 2013. Vol. 160. P. 441—445. https://doi.org/10.1149/2.019310jes.
9. Singh H., Dheeraj P.B., Singh Y.P., Rathore G., Bhardwaj M. Electrodeposition of porous copper as a substrate for electrocatalytic material. J. Electroanal. Chem. 2017. Vol. 785. P. 1—7. https://doi.org/10.1016/j.jelechem.2016.12.013.
10. Cherevko S., Chung C. Impact of key deposition parameters on the morphology of silver foams prepared by dynamic hydrogen template deposition. Electrochim. Acta. 2010. Vol. 55. Iss. 22. P. 6383—6390. https://doi.org/10.1016/j.electacta.2010.06.054.
11. Li Y., Jia W., Song Y., Xia X. Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template chem. Mater. 2007. Vol. 19. Iss. 23. P. 5758—5764 https://doi.org/10.1021/cm071738j.
12. Vázquez-Gómez L., Verlato E., Cattarin S., Comisso N., Guerriero P., Musiani M. Electrodeposition of porous Co layers and their conversion to electrocatalysts for methanol oxidation by spontaneous deposition of Pd. Electrochim. Acta. 2011. Vol. 56. Iss. 5. P. 2237—2245. https://doi.org/10.1016/j.electacta.2010.12.035.
13. Kim D., Cho K., Choi Y., Park C. Fabrication of porous Co—Ni—P catalysts by electrodeposition and their catalytic characteristics for the generation of hydrogen from an alkaline NaBH4 solution. Int. J. Hydrog. Energy. 2009. Vol. 34. Iss. 6. P. 2622—2630. https://doi.org/10.1016/j.ijhydene.2008.12.097.
14. Yang W., Chen S. Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review. Chem. Eng. J. 2020. Vol. 393. P. 124726. https://doi.org/10.1016/j.cej.2020.124726.
15. Eugénio S., Demirci U.B., Silva T.M., Carmezim M.J., Montemor M.F. Copper-cobalt foams as active and stable catalysts for hydrogen release by hydrolysis of sodium borohydride. Int. J. Hydrog. Energy. 2016. Vol. 41. Iss. 20. P. 8438— 8448. https://doi.org/10.1016/j.ijhydene.2016.03.122.
16. Aliyev A.Sh., Guseynova R.G., Gurbanova U.M., Babanly D.M., Fateev V.N. Electrocatalysts for water electrolysis. Chemical Probl. 2018. No. 3 (16). P. 283—306. https://doi.org/10.32737/2221-8688-2018-3-283-306.
17. Marozzi C.A., Chialvo A.C. Development of electrode morphologies of interest in electrocatalysis. Part 1: Electrodeposited porous nickel electrodes. Electrochim. Acta. 2000. Vol. 45. Iss. 13. P. 2111—2120. https://doi.org/10.1016/S0013-4686(99)00422-3.
18. Silva R.P., Eugénio S., Silva T.M., Carmezim M.J., Montemor M.F. Fabrication of three-dimensional dendritic Ni— Co films by electrodeposition on stainless steel substrates. J. Phys. Chem. C. 2012. Vol. 116. Iss. 42. P. 22425—22431. https://doi.org/10.1021/jp307612g.
19. Rafailović L.D., Gammer C., Rentenberger C., Kleber C., Whitehead A.H., Gollas B., Karnthaler H. Preparation of CoNi high surface area porous foams by substrate controlled electrodeposition. Phys. Chem. Chem. Phys. 2012. Vol. 14. P. 972—980 https://doi.org/10.1039/c1cp22503k.
20. Trofimova T.S., Ostanina T.N., Nikitin V.S., Rudoi V.M., Ostanin N.I., Trofimov A.A. Modeling of the porous nickel deposits formation and assessing the effect of their thickness on the catalytic properties toward the hydrogen evolution reaction. Int. J. Hydrog. Energy. 2021. Vol. 46. P. 16857— 16867 https://doi.org/10.1016/j.ijhydene.2021.02.093.
21. Ostanina T.N., Rudoi V.M., Patrushev A.V., Darintseva A.B., Farlenkov A.S. Modelling the dynamic growth of copper and zinc dendritic deposits under the galvanostatic electrolysis conditions. J. Electroanal. Chem. 2015. Vol. 750. P. 9—18. https://doi.org/10.1016/j.jelechem.2015.04.031.
22. Eadie W.T., Dryard D., James F.E., Roos M., Sadoulet B. Statistical methods in experimental physics. Geneva: CERN, 1971.
23. Kendall M.G., St’yuart A. Distribution theory. Transl. V.V. Sazonov, A.N. Shiryaev. Ed. A.N. Kolmogorov. Moscow: Nauka, 1966.
24. Kendall M. G., Styuart A. Statistical conclusions and connections. Transl. L.I. Gal’chuk, A.T. Terekhin. Ed. A.N. Kolmogorov. Moscow: Nauka, 1973.
Review
For citations:
Trofimova T.S., Darintseva A.B., Ostanina T.N., Rudoi V.M., Il’ina I.E. Effect of the structure and morphology of Ni-based porous deposits on their electrocatalytic activity towards hydrogen evolution reaction. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2021;(4):57-67. (In Russ.) https://doi.org/10.17073/1997-308X-2021-4-57-67