Production of finely dispersed titanium powder by volumetric reduction of its ions with sodium dissolved in the BaCl2–CaCl2–NaCl melt
https://doi.org/10.17073/1997-308X-2022-1-4-16
Abstract
The research is intended to develop a technology for the production of finely dispersed (10 to 100 μm) powders of titanium and its alloys suitable for use in additive technologies after classification and spheroidization. A eutectic mixture was used as electrolyte, mole fractions: BaCl2 – 0.16, CaCl2 – 0.47, NaCl – 0.37, melting point of 452 °C. Electrolytes with a similar composition are used in industry for the electrolytic production of sodium with high current efficiency. No titanium salts were added to electrolyte. Sodium losses due to evaporation, corrosion, and ion recharge were replenished by a periodic increase in electrolysis current. A VT1-0 titanium plate was used as an anode. The walls of a steel crucible served as a cathode. Sodium was released on these walls and dissolved in electrolyte. Titanium ions were reduced in the bulk of electrolyte and in the anode layer. It is the first time that the results obtained were interpreted using the data on the electrode potentials of Ti3+/Ti, Ti2+/Ti, Ti3+/Ti2+ systems. It was shown that the concentration of slowly moving complex Ti3+ ions increases in the anode layer, and sodium dissolved in electrolyte reduces mainly Ti2+ ions in the electrolyte volume in the first 12 min of electrolysis. Starting from the 20th min, the concentration of Ti2+ ions in the anode layer begins to increase rapidly according to the reaction: 2Ti3+ + Ti = 3Ti2+ as titanium powder accumulates in the electrolyte volume. At the same time, the proportion of sodium consumed for the reduction of Ti3+ ions to Ti2+ decreases, which contributes to an increase in current efficiency and cathode potential stabilization for 30 minutes at –2.963 V. After the 50th min, the reactivity of the salt melt begins to decrease, the concentration of Ti3+ ions increases steadily until it levels off with the concentration of Ti2+ ions at the 85th min. This sharply increased the current consumption for ion recharge and made it necessary to stop electrolysis after switching on a current of 12 A for a short time (for 40 s). After 10 s, judging by the change in the cathode potential, sodium dissolved in electrolyte was almost completely consumed for titanium ion reduction. After 6 min, the potentials of electrodes returned to the initial anode potential value indicating that the system returned to its original state with the near-zero content of titanium salts and dissolved sodium. 95 % of powder was obtained in the electrolyte volume. Current efficiency was 84.0 % and turned out to be close to the value calculated from the average valence of titanium ions and the loss of anode weight (87.0 %). After ultrasonic dispersion, more than 80 % of powder was in the 10–100 μm range with a maximum at 36 μm. X-ray phase analysis showed that this is practically pure α-titanium (93.06 %) and oxygenated α-titanium (5.45 %). The originality of the research consists in the use of a volumetric, intensive, electrolytic method for producing finely dispersed titanium powders with no dissolved sodium and titanium chlorides in the initial and final electrolytes, in a stepwise increase in the current and potentiometric process control. The uniqueness of the research consists in the titanium powder obtained where the major part is in the melt volume in the form of intergrowths that are easily crushed by ultrasonic dispersion into individual crystals. Over 80 % of these crystals were in the range of 10–100 μm required for additive technologies with an average size of 36 μm.
About the Authors
V. A. LebedevRussian Federation
Dr. Sci. (Chem.), prof. of the Department of metallurgy of non-ferrous metals
620002, Sverdlovsk region, Ekaterinburg, Mira str., 19
V. V. Polyakov
Russian Federation
postgraduate student of the Department of metallurgy of non-ferrous metals
Ekaterinburg
References
1. Smirnov M.V., Chebykin V.V., Tsiovkina L.A. The thermodynamic properties of sodium and potassium dissolved in their molten chlorides, bromides, and iodides. Electrochim. Acta. 1981. Vol. 26. No. 9. P. 1275—1288. https://doi.org/10.1016/0013-4686(81)85111-0.
2. Ковалевский P.A., Чебыкин В.В. Транспортные характеристики восстановленных форм катионов растворителя в расплавах хлоридов щелочных металлов. Расплавы. 1992. No. 3. С. 36—42. Kovalevskii R.A., Chebykin V.V. Transport characteristics of reduced forms of solvent cations in melts of alkali metal chlorides. Rasplavy. 1992. No. 3. P. 36—42 (In Russ.).
3. Костылев В.А., Леонтьев Л.И., Лисин В.Л., Петрова С.А., Зайков Ю.П., Чебыкин В.В., Кудяков В.Я., Ивенко В.М., Циовкина Л.А., Филатов Е.С. Способ получения порошка тугоплавкого металла: Пат. RU2401888C1 (РФ). 2010. Kostylev V.A., Leont’ev L.I., Lisin V.L., Petrova S.A., Zaikov Yu.P., Chebykin V.V., Kudyakov V.Ya., Ivenko V.M., Tsiovkina L.A., Filatov E.S. Method for obtaining a refractory metal powder: Pat. RU2401888C1 (RF). 2010 (In Russ.).
4. Li H., Song Q., Xu Q., Chen Y., Meng J. Electrochemical synthesis of NbC—Sn composite powder in molten chloride. Trans. Nonferr. Met. Soc. China. 2017. Vol. 27. No. 10. P. 2310—2316. https://doi.org/10.1016/S1003-6326(17)60257-7.
5. Lei X., Xu B., Yang G., Shi T., Liu D., Yang B. Direct calciothermic reduction of porous calcium titanate to porous titanium. Mater. Sci. Eng. C. 2018. Vol. 91. P. 125— 134. https://doi.org/10.1016/J.MSEC.2018.05.027.
6. Вараксин А.В., Лисин В.Л., Костылев В.А. Влияние параметров электрохимического процесса на гранулометрический состав и морфологию титановых порошков. Бутлеровские сообщения. 2014. Т. 37. No. 1. С. 62—67. Varaksin A.V., Lisin V.L., Kostylev V.A. The influence of the parameters of the electrochemical process on the particle size distribution composition and the morphology of titanium powders. Butlerovskie soobshcheniya. 2014. Vol. 37. No. 1. P. 62—67 (In Russ.).
7. Вараксин А.В., Лисин В.Л., Костылев В.А. Получение наноразмерных и ультрадисперсных порошков металлов и их карбидов электрохимическим способом. Бутлеровские сообщения. 2014. Т. 37. No. 1. С. 76—83. Varaksin A.V., Lisin V.L., Kostylev V.A. Obtaining nanoscale and ultrafine powders of metals and their carbides with an electrochemical method. Butlerovskie soobshcheniya. 2014. Vol. 37. No. 1. P. 76—83 (In Russ.).
8. Yuan B., Okabe T.H. Niobium powder production by reducing electrochemically dissolved niobium ions in molten salt. J. Alloys Compd. 2008. Vol. 454. P. 185—193. https://doi.org/10.1016/J.JALLCOM.2006.12.121.
9. Чернышев А.А., Аписаров А.П., Зайков Ю.П. Вторичное восстановление тантала в расплавах NaCl—KCl и KCl—CaCl2. Цвет. металлы. 2017. No. 11. С. 43—48. Chernyshev A.A., Apisarov A.P., Zaikov Yu.P. Secondary reduction of tantalum in NaCl—KCl and KCl—CaCl2 molten salts. Tsvetnye Metally. 2017. No. 11. P. 43—48 (In Russ.). https://doi.org/10.17580/tsm.2017.11.08.
10. Лисин В.Л., Костылев В.А., Леонтьев Л.И. Технология получения наноразмерных и ультрадисперсных металлических порошков различного назначения электрохимическим способом. В сб.: Физическая химия и технология в металлургии. Челябинск: Юж.-Урал. книж. изд-во, 2015. С. 218—226. Lisin V.L., Kostylev V.A., Leont’ev L.I. Technology for obtaining nanoscale and ultrafine metal powders of various purposes with an electrochemical method. In: Physical chemistry and technology in metallurgy. Chelyabinsk: Yuzhno-Ural’skoe knizhnoe izdatel’stvo, 2015. P. 218— 226 (In Russ.).
11. Лебедев В.А., Бабин А.В., Поляков В.В., Рымкевич Д.А., Бездоля И.Н. Восстановление титана из его тетрахлорида кальцием, растворенным в расплаве СaСl2. Титан. 2017. No. 1. С. 4—9. Lebedev V.A., Babin A.V., Polyakov V.V., Rymkevich D.A., Bezdolya I.N. Reduction of titanium from its tetrachloride calcium dissolved in the melt of the CaCl2. Titan. 2017. No. 1. P. 4—9 (In Russ.).
12. Polyakov V.V., Babin A.V., Lebedev. V.A. Volumetric reduction of FeCl2—CaCl2 melt with calcium dissolved in calcium chloride. Russ. J. Non-Ferr. Met. 2019. Vol. 60. No. 4. P. 408—412. DOI: 10.3103/S1067821219040114.
13. Смирнов М.В. Электродные потенциалы в расплавленных хлоридах. М.: Наука, 1973. Smirnov M.V. Electrode potentials in molten chlorides. Mosсow: Nauka, 1973 (In Russ.).
14. Храмов А.П., Чернышев А.А., Исаков А.В., Зайков Ю.П. Вторичное восстановление тугоплавкого металла у гладкого катода при электролизе солевого расплава. 1. Вывод базовых уравнений для модели процесса. Электрохимия. 2020. Т. 56. No. 9. С. 771—781. Khramov A.P., Chernyshev A.A., Isakov A.V., Zaikov Yu.P. Secondary reduction of a refractory metal near a smooth cathode during electrolysis of molten salt. 1. Derivation of basic equations for the process model. Elektrokhimiya. 2020. Vol. 56. No. 9. P. 771—781 (In Russ.). DOI: 10.31857/S0424857020090054.
15. Oishi T., Kawamura H., Ito Y. Formation and size control of titanium particles by cathode discharge electrolysis of molten chloride. J. Appl. Electrochem. 2002. Vol. 32. P. 819—824.
16. Лебедев В.А., Поляков В.В. Способ получения микроструктурных порошков титана: Пат. RU2731950C2 (РФ). 2020. Lebedev V.A., Polyakov V.V. The method of obtaining microstructural titanium powders: Pat. RU2731950C2 (RF). 2020 (In Russ.).
17. Лебедев В.А. Взаимосвязь стандартных и условных стандартных потенциалов в расплавленных галогенидах. Докл. Акад. наук СССР. 1993. Т. 330. No. 5. С. 586—589. Lebedev V.A. Relationship of standard and conventional standard potentials in molten halides. Doklady Akademii nauk SSSR. 1993. Vol. 330. No. 5. P. 586—589 (In Russ.).
18. Гасик М.И., Лякишев Н.П. Теория и технология электрометаллургии ферросплавов: Учеб. для вузов. М.: Интермет Инжиниринг, 1999. Gasik M.I., Lyakishev N.P. Theory and technology of electrometallurgy of ferroalloys. Moscow: Intermet Inzhiniring, 1999 (In Russ.).
19. Boulos M. Plasma power can make better powders. Metal. Powder Report. 2004. Vol. 59. No. 5. P. 16—21. DOI: 10.1016/S0026-0657(04)00153-5.
20. Sun P., Fang Z., Zhang Y., Xia Y. Review of the methods for production of spherical Ti and Ti alloy powder. J. Miner. Met. Mater. Soc. 2017. Vol. 69. No. 10. P. 1853—1860. DOI: 10.1007/s11837-017-2513-5.
21. Heidloff A.J., Rieken J.R., Anderson I.E., Byrd D., Sears J., Glynn M., Ward R.M. Advanced gas atomization processing for Ti and Ti alloy powder manufacturing. J. Miner. Met. Mater. Soc. 2010. Vol. 62. No. 5. P. 35—41.
22. Larouche F., Balmayer M., Trudeau-Lalonde F. Plasma atomization metal powder manufacturing processes and systems therefore: Pat. WO2017011900 A1 (WIPO). 2017. https://patents.google.com/patent/WO2017011900A1/en?oq=WO2017011900+A1.
23. Dion C.A.D., Kreklewetz W., Carabin P. Plasma apparatus for the production of high quality spherical powders at high capacity: Pat. WO2016191854 A1. (WIPO). 2016. https://patents.google.com/patent/US20180169763A1/en?oq=WO2016191854+A1
24. Sun P., Fang Z., Xia Y., Zhang Y., Zhou C. A novel method for production of spherical Ti—6Al—4V powder for additive manufacturing. Powder Technol. 2016. Vol. 301. P. 331—335. https://doi.org/10.1016/j.powtec.2016.06.022.
Review
For citations:
Lebedev V.A., Polyakov V.V. Production of finely dispersed titanium powder by volumetric reduction of its ions with sodium dissolved in the BaCl2–CaCl2–NaCl melt. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(1):4-16. (In Russ.) https://doi.org/10.17073/1997-308X-2022-1-4-16