Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Structural and morphological study of the Al–Si–Mg–SiC composite material produced by mechanical alloying

https://doi.org/10.17073/1997-308X-2022-1-17-25

Abstract

The research focuses on aluminum composite granules obtained by the mechanical alloying of VAS1 aluminum alloy and silicon carbide initial powders. It was found that the morphology and average size of composite granules change as the time of mechanical alloying increases. There are the processes of aluminum matrix plastic deformation and the introduction of silicon carbide particles into the matrix, «cold welding» of agglomerates to each other and the growth of an average granule size up to 550 μm that occur for 40 hours of processing. After longer mechanical alloying (60 h), the structure of composite granules becomes uniform, and the average particle size reaches ~150 μm remaining virtually unchanged as the process time increases. X-ray analysis showed that there is a change not only in the morphology of composite granules, but also in their internal structure: coherent scattering regions decrease, the lattice constant of the aluminum matrix alloy changes, microdeformations and stacking faults increase. Transmission electron microscopy studies were conducted in order to study the material microstructure more deeply. Their results proved that the material has a uniform ultra-fine grain structure. The solid solution of aluminum has a maximum grain size of 160 nm. Dislocation density in the composite is rather high. The structure features nanosized plate-like Si particles and silicon carbide existing in the material as distributed splintery coarse particles. No diffusion zone between SiC particles and the base material was found.

About the Authors

A. A. Shavnev
All-Russian Scientific Research Institute of Aviation Materials (VIAM) of National Research Center «Kurchatov Institute»
Russian Federation

Dr. Sci. (Eng.), deputy head of the research and development organization «Non-metallic materials, metal composite materials and heat protection»

105005, Moscow, Radio str., 17



S. V. Nerush
All-Russian Scientific Research Institute of Aviation Materials (VIAM) of National Research Center «Kurchatov Institute»
Russian Federation

head of the research and development organization «Technologies of powder metallurgy, additive manufacturing, welding, protective and special high-temperature coatings and materials» 

Moscow



E. I. Kurbatkina
All-Russian Scientific Research Institute of Aviation Materials (VIAM) of National Research Center «Kurchatov Institute»
Russian Federation

Dr. Sci. (Eng.), head of laboratory No. 26 

Moscow



D. V. Kosolapov
All-Russian Scientific Research Institute of Aviation Materials (VIAM) of National Research Center «Kurchatov Institute»
Russian Federation

head of the section of laboratory No. 26 

Moscow



P. N. Medvedev
All-Russian Scientific Research Institute of Aviation Materials (VIAM) of National Research Center «Kurchatov Institute»
Russian Federation

head of the sector of laboratory No. 17 

Moscow



References

1. Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года». Авиац. материалы и технологии. 2015. No. 1. С. 3—33. DOI: 10.18577/2071-9140-2015-0-1-3-33. Kablov E.N. Innovative developments of FSUE «VIAM» SSC RF for the implementation of «Strategic directions for the development of materials and technologies for their processing for the period up to 2030». Aviatsionnye materialy i tekhnologii. 2015. No. 1. P. 3—33. DOI: 10.18577/2071-9140-2015-0-1-3-33 (In Russ.).

2. Каблов Е.Н. Из чего сделать будущее? Материалы нового поколения, технологии их создания и переработки — основа инноваций. Крылья Родины. 2016. No. 5. С. 8—18. Kablov E.N. What future make of? New generation of materials, technologies for their creation and processing — the basis of innovation. Kryl’ya Rodiny. 2016. No. 5. P. 8—18 (In Russ.).

3. Каблов Е.Н., Валуева М.И., Зеленина И.В., Хмельницкий В.В., Алексашин В.М. Углепластики на основе бензоксазиновых олигомеров — перспективные материалы. Тр. ВИАМ. 2020. No. 1 (85). С. 68—77. URL: http://www.viam-works.ru (дата обращения: 02.06.2020). DOI: 10.18577/2307-6046-2020-0-1-68-77. Kablov E.N., Valueva M.I., Zelenina I.V., Khmelnitskii V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers — promising materials. Trudy VIAM. 2020. No. 1 (85). P. 68—77. URL: http://www.viam-works.ru (accessed: 02.06.2020). DOI: 10.18577/2307-6046-2020-0-1-68-77 (In Russ.).

4. Антипов В.В. Перспективы развития алюминиевых, магниевых и титановых сплавов для изделий авиационно-космической техники. Авиац. материалы и технологии. 2017. No. S. С. 186—194. DOI: 10.18577/2071-9140-2017-0-S-186-194. Antipov V.V. Prospects for the development of aluminum, magnesium and titanium alloys for products of aerospace technology. Aviatsionnye materialy i tekhnologii. 2017. No. S. P. 186—194. DOI: 10.18577/2071-9140-2017-0-S-186-194 (In Russ.).

5. Jia D.C. Influence of SiC particulate size on the microstructural evolution and mechanical properties of Al—6Ti—6Nb matrix composites. Mater. Sci. Eng. A. 2000. Vol. 289. P. 83—90.

6. Zhang X.-P., Ye L., Mai Y.-W., Quan G.-F., Wei W. Investigation on diffusion bonding characteristics of SiC particulate reinforced aluminium metal matrix composites (Al/SiCp-MMC). Compos. Part A: Appl. Sci. Manuf. 1999. Vol. 30. No. 12. P. 1415—1421.

7. He C., Zhao N., Shi C., Song S. Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition. J. Alloys Compd. 2009. Vol. 487. No. 1-2. P. 258—262.

8. Canakci A., Varol T. Microstructure and properties of AA7075/Al—SiC composites fabricated using powder metallurgy and hot pressing. Powder Technol. 2014. Vol. 268. P. 72—79.

9. Kanth U.R., Rao P.S., Krishna M.G. Mechanical behaviour of fly ash/SiC particles reinforced Al—Zn alloy-based metal matrix composites fabricated by stir casting method. J. Mater. Res. Technol. 2019. Vol. 8. No. 1. P. 737— 744. https://doi.org/10.1016/j.jmrt.2018.06.003.

10. Mohanavel V., Rajan K., Kumar S.S., Udishkumar S., Jayasekar C. Effect of silicon carbide reinforcement on mechanical and physical properties of aluminum matrix composites. Mater. Today Proc. 2018. Vol. 5. No. 1. P. 2938—2944. https://doi.org/10.1016/j.matpr.2018.01.089.

11. Alaneme K.K., Fajemisin A.V., Maledi N.B. Development of aluminium-based composites reinforced with steel and graphite particles: Structural, mechanical and wear characterization. J. Mater. Res. Technol. 2019. Vol. 8. No. 1. P. 670—682. https://doi.org/10.1016/j.jmrt.2018.04.019.

12. Kumar R.A., Devaraju A., Arunkumar S. Experimental investigation on mechanical behaviour and wear parameters of TiC and graphite reinforced aluminium hybrid composites. Mater. Today Proc. 2018. Vol. 5. No. 6. P. 14244— 14251. https://doi.org/10.1016/j.matpr.2018.03.005.

13. Qin X.H., Jiang D.L., Dong S.M. Nanometer, submicron and micron sized aluminum powder prepared by semi-solid mechanical stirring method with addition of ceramic particles. Mater. Sci. Eng. A. 2004. Vol. 385. P. 31—37.

14. Razavi T.S.S., Yazdani R., Salahi E., Mobasherpour I. Production of Al—20wt.%Al2O3 composite powder using high energy milling. Powder Technol. 2009. Vol. 320. P. 591—602.

15. Няфкин А.Н., Лощинин Ю.В., Курбаткина Е.И., Косолапов Д.В. Исследование влияния фракционного состава карбида кремния на теплопроводность композиционного материала на основе алюминиевого сплава. Тр. ВИАМ. 2019. No. 11 (83). С. 53—59. URL: http:viam-works.ru (дата обращения: 17.11.2021). DOI: 10.18577/2307-6046-2019-0-11-53-59. Nyafkin A.N., Loshchinin Yu.V., Kurbatkina E.I., Kosolapov D.V. Investigation of the influence of the fractional composition of silicon carbide on the thermal conductivity of a composite material based on an aluminum alloy. Trudy VIAM. 2019. No. 11. P. 53—59. URL: http: viamworks.ru (accessed: 17.11.2021). DOI: 10.18577/2307-6046-2019-0-11-53-59 (In Russ.).

16. Няфкин А.Н., Шавнев А.А., Курбаткина Е.И., Косолапов Д.В. Исследование влияния размера частиц карбида кремния на температурный коэффициент линейного расширения композиционного материала на основе алюминиевого сплава. Тр. ВИАМ. 2020. No. 2. C. 41—49. URL: http:viam-works.ru (дата обращения: 25.11.2021). DOI: 10.18577/2307-6046-2020-0-2-41-49. Nyafkin A.N., Shavnev A.A., Kurbatkina E.I., Kosolapov D.V. Study of the effect of the size of silicon carbide particles on the temperature coefficient of linear expansion of a composite material based on an aluminum alloy. Trudy VIAM. 2020. No. 2. P. 41—49. URL: http: viamworks.ru (accessed: 25.11.2021). DOI: 10.18577/2307-6046-2020-0-2-41-49 (In Russ.).

17. Baradeswaran A., Elaya Perumal A. Influence of B4C on the tribological and mechanical properties of Al 7075— B4C composites. Compos. B. Eng. 2013. Vol. 54. No. 1. P. 146—152. https://doi.org/10.1016/j.compositesb.2013.05.012.

18. Zheng R., Hao X., Yuan Y., Wang Z., Ameyama K., Ma C. Effect of high volume fraction of B4C particles on the microstructure and mechanical properties of aluminum alloy based composites. J. Alloys Compd. 2013. Vol. 576. P. 291—298. https://doi.org/10.1016/j.jallcom.2013.04.141.

19. Ghasali E., Alizadeh M., Ebadzadeh T., Pakseresht A.H., Rahbari A. Investigation on microstructural and mechanical properties of B4C-aluminum matrix composites prepared by microwave sintering. J. Mater. Res. Technol. 2015. Vol. 4. No. 4. P. 411—415. https://doi.org/10.1016/j.jmrt.2015.02.005.

20. Baradeswaran A., Vettivel S.C., Elaya Perumal A., Selvakumar N., Franklin Issac R. Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites. Mater. Des. 2014. Vol. 63. P. 620—632. https://doi.org/10.1016/j.matdes.2014.06.054.

21. Hesabi R.S., Sajjadi S.A. Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites. Mater. Sci. Eng. A. 2006. Vol. 428. P. 159—168.

22. Hernández-Rivera J.L., Cruz Rivera J.J., Gómez C., Coreño O., Martínez-Sánchez R. Synthesis of graphite reinforced aluminum nanocomposite by mechanical alloying. Mater. Trans. 2010. Vol. 51. P. 1120—1126.

23. Rietveld H.M. The rietveld method: A retrospection. Z. Kristallogr. 2010. Vol. 225. P. 545—547.


Review

For citations:


Shavnev A.A., Nerush S.V., Kurbatkina E.I., Kosolapov D.V., Medvedev P.N. Structural and morphological study of the Al–Si–Mg–SiC composite material produced by mechanical alloying. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(1):17-25. (In Russ.) https://doi.org/10.17073/1997-308X-2022-1-17-25

Views: 556


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)