Mechanism of liquid-phase interaction between nanocrystalline composition (VC0.40О0.53–C)–C and titanium nickelide
https://doi.org/10.17073/1997-308X-2022-1-26-35
Abstract
The article considers the possibility of binding free carbon existing in the VC0.40O0.53–Cfree nanocrystalline composition to the carbide phase. This composition is obtained by plasma-chemical synthesis in a low-temperature nitrogen plasma. As a carbide former, titanium was used in the form of its nickelide TiNi, which has a melting point of 1310 °С. Experiments were carried out under vacuum sintering conditions involving the liquid phase at 1500 °C for 40 min. The data obtained in X-ray diffraction, scanning electron microscopy and energy-dispersive analysis were used to determine the phase composition and microstructural features of sintered samples. Liquid-phase interaction between the VC0.40O0.53–Cfree nanocrystalline composition and titanium nickelide, the content of which varied from 10 to 99 wt.%, was studied based on the results of experiments. It was shown that the content of Cfree and VC vanadium carbide increases with the simultaneously increasing TiC content as the TiNi mass content increases in the range of 10–90 wt.%. With a further increase in the titanium nickelide content to 99 wt.%, Ti3Ni4 and Ni3Ti nickelides are present after sintering. The content of free carbon increases to 88 wt.%, and the amount of TiC decreases to 5 wt.%. The data obtained in the course of the study were used to propose various schemes of processes occurring during the (VC0.40O0.53–Cfree)–TiNi liquid phase sintering. In particular, sintering involving the liquid phase proceeds in three stages including TiNi melting, refractory base dissolution, its reprecipitation in the form of TiCx and VCx carbides, and cooling of the resulting composition. It should be noted that the mechanism of liquid-phase interaction during vacuum sintering involving the liquid phase was developed on the basis of the laws presented in the paper by M. Gumenik.
Keywords
About the Authors
Yu. A. AvdeevaRussian Federation
research scientist of the Laboratory of structural and phase analysis
620990, Ekaterinburg, Pervomaiskaya str., 91
A. N. Ermakov
Russian Federation
Cand. Sci. (Chem.), senior research scientist of the Laboratory of structural and phase analysis
Ekaterinburg
I. V. Luzhkova
Russian Federation
research scientist of the Laboratory of structural and phase analysis
Ekaterinburg
L. Kh. Askarova
Russian Federation
Cand. Sci. (Chem.), assistant prof. of the Department of general chemistry
620002, Ekaterinburg, Mira str., 19
References
1. Wu K.-H., Jiang Y., Jiao S., Chou K.-C., Zhang G.-H. Synthesis of high purity nano-sized transition-metal carbides. J. Mater. Res. Technol. 2020. Vol. 9. P. 11778— 11790. https://doi.org/10.1016/j.jmrt.2020.08.053.
2. Kornaus K., Rączka M., Gubernat A., Zientara D. Pressureless sintering of binderless tungsten carbide. J. Eur. Ceram. Soc. 2017. Vol. 37. P. 4567—4576. https://doi.org/10.1016/j.jeurceramsoc.2017.06.008.
3. Ha D., Kim J., Han J., Kang S. Synthesis and properties of (Hf1–xTax)C solid solution carbides. Ceram. Int. 2018. Vol. 44. P. 19247—19253. https://doi.org/10.1016/j.ceramint.2018.07.149.
4. Liu B., Ke S., Shao Y., Jia D., Fan C., Zhang F., Fan R. Formation mechanism for oxidation synthesis of carbon nanomaterials and detonation process for core-shell structure. Carbon. 2018. Vol. 127. P. 21—30. https://doi.org/10.1016/j.carbon.2017.10.081.
5. Xie Z., Deng Y., Yang Y., Su H., Zhou D., Liua C., Yang W. Preparation of nano-sized titanium carbide particles via a vacuum carbothermal reduction approach coupled with purification under hydrogen/argon mixed gas. RSC Adv. 2017. Vol. 7. P. 9037—9044. https://doi.org/10.1039/C6RA28264D.
6. Kimmelab Y.C., Espositoab D.V., Birkmireb R.W., Chen J.G. Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts. Int. J. Hydrogen Energy. 2012. Vol. 37. P. 3019—3024. https://doi.org/10.1016/j.ijhydene.2011.11.079.
7. Авдеева Ю.А., Ермаков А.Н., Лужкова И.В., Аскарова Л.Х., Добринский Э.К., Зайнулин Ю.Г. Механизм жидкофазного взаимодействия нанокристаллической композиции (VC0,40О0,53—C) с никелем. Росс. нанотехнологии. 2018. Т. 13. No. 5—6. С. 48—53. Avdeeva Yu.A., Ermakov A.N., Luzhkova I.V., Askarova L.Kh., Dobrinskii E.K., Zainulin Yu.G. Mechanism of liquid-phase interaction of nanocrystalline composition (VC0.40О0.53—C) with nickel. Nanotechnologies in Russia. 2018. Vol. 13. No. 5—6. P. 261—267. https://doi.org/10.1134/S1995078018030035.
8. Авдеева Ю.А., Ермаков А.Н., Лужкова И.В., Аскарова Л.Х., Добринский Э.К., Зайнулин Ю.Г. Твердофазное взаимодействие переконденсированной тонкодисперсной смеси (VC0,40О0,53—C) с гидридом титана. Журн. прикл. химии. 2020. Т. 93. No. 11. С. 106—115. Avdeeva Yu.A., Ermakov A.N., Luzhkova I.V., Askarova L.Kh., Dobrinskii E.K., Zainulin Yu.G. Solid phase interaction of the recondensed finely dispersed mixture (VC0.40O0.53—C) with titanium hydride. Russ. J. Appl. Chem. 2020. Vol. 93. No. 11. P. 1696—1704. https://doi.org/10.1134/S1070427220110105.
9. Гуменик М., Уэйлен Т.Дж. Керметы. Под ред. Дж.Р. Тинклпо, У.Б. Крэндалла. М.: Изд-во иностр. лит., 1962. С. 18—81. Gumenik M., Waylen T.J. Cermets. Ed. J.R. Tinklepaugh, W.B. Crandall. N.Y.: Reinhold Publ. Corp.; London: Chapman and Hall, Ltd., 1960.
10. Аскарова Л.Х., Щипачев Е.В., Ермаков А.Н., Григоров И.Г., Зайнулин Ю.Г. Влияние ванадия и ниобия на фазовый состав керметов на основе карбида — нитрида титана с титан-никелевой связкой. Неорган. материалы. 2001. Т. 37. No. 2. С. 207—210. Askarova L.Kh., Shchipachev E.V., Ermakov A.N., Grigorov I.G., Zainulin Yu.G. Effects of vanadium and niobium on the phase composition of titanium-carbonitride-base cermets with titanium—nickel binder. Inorg. Mater. 2001. Vol. 37. No. 2. P. 157—160. https://doi.org/10.1023/A:1004161727907.
11. Yin Z., Yan S., Xu W., Yuan J. Microwave sintering of Ti(C, N)-based cermet cutting tool material. Ceram. Int. 2018. Vol. 44. P. 1034—1040. https://doi.org/10.1016/j.ceramint.2017.10.041.
12. Zhao Z., Qi Q., Ma M., Han R., Shang Q., Yao S. The formation mechanism of TiC/Ni composites fabricated by pressureless reactive sintering. Int. J. Refract. Met. Hard Mater. 2021. Vol. 97. Paper 105524. https://doi.org/10.1016/j.ijrmhm.2021.105524.
13. Кульков С.Н., Рудай В.В. Микроструктура композиционного материала TiC—TiNi с микроградиентной структурно-неустойчивой матрицей. Известия вузов. Физика. 2012. Т. 55. No. 5—2. C. 166—169. Kulkov S.N., Rudai V.V. Microstructure of TiC—TiNi composite material with microgradient structurally unstable matrix. Izvestiya vuzov. Fizika. 2012. Vol. 55. No. 5—2. P. 166—169 (In Russ.).
14. Сивоха В.П., Миронов Ю.П., Рудай В.В., Кульков С.Н. Структура и свойства композиционных материалов TiC—NiTi, легированных железом. Журн. техн. физики. 2004. Т. 74. Вып. 1. С. 53—57. Sivokha V.P., Mironov Y.P., Ruday V.V., Kulkov S.N. Structure and properties of TiC—TiNi composites alloyed with iron. Tech. Phys. 2004. Vol. 49. P. 52—56. https://doi.org/10.1134/1.1642678.
15. Григоров И.В., Ермакова О.Н., Ермаков А.Н., Мишарина И.В., Зайнулин Ю.Г., Малашин С.И., Добринский Э.К. Структурно-морфологические превращения никелида титана, обработанного в азотной плазме. Металлы. 2010. No. 1. С. 84—89. Grigorov I.G., Ermakova O.N. Ermakov A.N., Misharina I.V., Zainilin Y.G., Malashin S.I., Dobrinskii E.K. Structural-morphological transformation in titanium nickelide treated in a nitrogen plasma. Russ. Metall. 2010. Vol. 2010. No. 1. P. 71—75. https://doi.org/10.1134/S0036029510010143.
16. Стороженко П.А., Гусейнов Ш.Л., Малашин С.И. Нанодисперсные порошки: методы получения и способы практического применения. Росс. нанотехнологии. 2009. No. 1—2. С. 27—39. Storozhenko P.A., Guseinov Sh.L., Malashin S.I. Nanodispersed powders: synthesis methods and practical applications. Nanotechnologies in Russia. 2009. Vol. 4. No. 5. P. 262—274. https://doi.org/10.1134/S1995078009050024.
17. Zalite I., Grabis J., Palcevskis E., Herrmann M. Plasma processed nanosized-powders of refractory compounds for obtaining fine-grained advanced ceramics. IOP Conf. Ser.: Mater. Sci. Eng. 2011. Vol. 18. Paper 062024. DOI: 10.1088/1757-899X/18/6/062024.
18. Filkov M., Kolesnikov A. Plasmachemical synthesis of nanopowders in the system Ti(O,C,N) for material structure modification. J. Nanosci. 2016. Vol. 2016. Paper 1361436. https://doi.org/10.1155/2016/1361436.
19. ГОСТ 7885-86. Углерод технический для производства резины. Технические условия. М.: ИПК Изд-во стандартов, 2002. GOST 7885-86. Technical carbon for rubber production. Technical conditions. Moscow: IPK Izdatel’stvo standartov, 2002 (In Russ.).
20. Krutskii Y.L., Krutskaya T.M., Gudyma T.S., Gerasimov K.B., Khabirov R.R., Mass A.V. Carbothermal and boron carbide reduction of oxides of some transition metals. MATEC Web Conf. 2021. Vol. 340. Paper 01040. https://doi.org/10.1051/matecconf/202134001040.
21. Zhao Z., Liu Y., Cao H., Gao S., Tu M. Synthesis of vanadium carbide nanopowders by thermal processing and their characterization. Powder Technol. 2008. Vol. 181. P. 31—35. https://doi.org/10.1016/j.powtec.2007.06.011.
22. Zhou Y., Wang Y., Chou K., Zhang G. Synthesis of high-quality ferrovanadium nitride by carbothermal reduction nitridation method. J. Iron Steel Res. Int. 2021. Vol. 28. P. 255—262. https://doi.org/10.1051/matecconf/202134001040.
23. Zaki Z.I., El-Sadek M.H., Ali H.H., Ahmed H. Synthesis of vanadium carbide by mechanical activation assisted carbothermic reduction. Materials. 2020. Vol. 13. Paper 4408. https://doi.org/10.3390/ma13194408.
24. Чалмерс Б. Теория затвердевания. М.: Металлургия, 1968. С. 82—88. Chalmers B. Principles of solidification. N.Y., London, Sidney: John Wiley & Sons, Inc., 1964. https://doi.org/10.1007/978-1-4684-1854-5_5.
25. Жуков М.Ф., Черский И.Н., Черепанов А.Н., Коваленко Н.А., Сабуров В.П., Галевский Г.В., Андрианова О.А., Крушенко Г.Г. Упрочнение металлических полимерных и эластомерных материалов ультрадисперсными порошками плазмохимического синтеза. Новосибирск: Наука. Сиб. изд. фирма РАН, 1999. Zhukov M.F., Cherskii I.N., Cherepanov A.N., Kovalenko N.A., Saburov V.P., Galevskii G.V., Andrianova O.A., Krushenko G.G. Strengthening of metallic polymer and elastomeric materials with ultrafine powders of plasmachemical synthesis. Novosibirsk: Nauka. Sibirskaya izdatel’skaya firma RAN, 1999 (In Russ.).
26. Швейкин Г.П., Алямовский С.И., Зайнулин Ю.Г., Гусев А.И., Губанов В.А., Курмаев Э.З. Соединения переменного состава и их твердые растворы. Свердловск: УНЦ АН СССР, 1984. Shveikin G.P., Alyamovskii S.I., Zainulin Yu.G., Gusev A.I., Gubanov V.A., Kurmaev E.Z. Compounds of variable composition and their solid solutions. Sverdlovsk: UNTs AN SSSR, 1984 (In Russ.).
Review
For citations:
Avdeeva Yu.A., Ermakov A.N., Luzhkova I.V., Askarova L.Kh. Mechanism of liquid-phase interaction between nanocrystalline composition (VC0.40О0.53–C)–C and titanium nickelide. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(1):26-35. (In Russ.) https://doi.org/10.17073/1997-308X-2022-1-26-35