Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

MoSi2–MoS2 composite antifriction material

https://doi.org/10.17073/1997-308X-2022-1-36-42

Abstract

A new high-temperature antifriction composite material 90 % MoSi2 + 10 % MoS2 was developed with a static friction coefficient of less than 0.3. The material is functional at temperatures up 1500 °C under neutron irradiation in an inert gas environment. Modes of initial MoSi2 and MoS2 powder mixture preparation and hot pressing of the resulting charge in a vacuum induction unit in graphite molds were worked out at a temperature of 1600–1650 °C, specific hot pressing pressure of 25 MPa, and holding for 1 h at these values of temperature and pressure. Tribotechnical properties of the material depending on the compression force in the friction pair and on the counterbody material hardness were investigated. It was shown that the higher the compression force and the harder the counterbody material in the friction pair, the lower the coefficient of friction. The effect of temperature on the physical, mechanical and heat-transfer properties of the material was established. As the temperature increases from 20 to 1000 °C, the material compressive strength decreases from 1388 to 739 MPa. An increase in the temperature from 25 to 400 °C leads to an increase in the specific heat capacity from 427 to 596 J/(kg·K) and the coefficient of heat conductivity from 2.35 to 3.41 W/(m·K). Plain bearings made of this material successfully passed durability and reactor tests.

About the Authors

G. Yu. Smorchkov
Russian Federal Nuclear Center–All-Russian Research Institute оf Experimental Physics (RFNC– VNIIEF)
Russian Federation

head of the laboratory «Ceramic materials»

607188, Sarov, Mira pr., 37 



A. I. Rachkovskij
Russian Federal Nuclear Center–All-Russian Research Institute оf Experimental Physics (RFNC– VNIIEF)
Russian Federation

Cand. Sci. (Eng.), leading researcher of the laboratory «Refractory materials»

Sarov



G. V. Baranov
Russian Federal Nuclear Center–All-Russian Research Institute оf Experimental Physics (RFNC– VNIIEF)
Russian Federation

Cand. Sci. (Eng.), head of the scientific research department 

Sarov



D. N. Kondrokhin
Russian Federal Nuclear Center–All-Russian Research Institute оf Experimental Physics (RFNC– VNIIEF)
Russian Federation

head of the group in the laboratory «Ceramic materials»  

Sarov



S. S. Kurganov
Russian Federal Nuclear Center–All-Russian Research Institute оf Experimental Physics (RFNC– VNIIEF)
Russian Federation

engineer-technologist of the laboratory «Ceramic materials» 

Sarov



References

1. Федорченко И.М., Пугина Л.И. Композиционные спеченные антифрикционные материалы. Киев: Наук. думка, 1980. Fedorchenko I.M., Pugina L.I. Composite sintering antifriction materials. Kiev: Naukova Dumka, 1980 (In Russ.).

2. Либенсон Г.А. Производство порошковых изделий. М.: Металлургия, 1990. Libenson G.A. Manufacturing powder parts. Moscow: Metallurgiya, 1990 (In Russ.).

3. Майорова Л.А. Твердые неорганические вещества в качестве высокотемпературных смазок. М.: Наука, 1971. Maiorova L.A. Solid inorganic materials as a high-temperature lubricants. Moscow: Nauka, 1971 (In Russ.).

4. Брейтуэйт Е.Р. Твердые смазочные материалы и антифрикционные покрытия. Пер. с англ. под ред. В.В. Синицина. М.: Химия, 1967. Braithwaite E.R. Solid lubricants materials and antifriction surfaces. Ed. V.V. Sinitsin (transl. engl.). Moscow.: Khimiya, 1967 (In Russ.).

5. Вайнштейн В.Э., Трояновская Г.И. Сухие смазки и самосмазывающиеся материалы. М.: Машиностроение, 1968. Vainshtein V.E., Troyanovskaya G.I. Dry lubricats and selflubricanting materials. Moscow: Mashinostroenie, 1968 (In Russ.).

6. Манг Т., Дрезель У. Смазки. Производство, применение, свойства: Справочник. Пер. с англ. под ред. В.М. Школьникова. СПб.: Профессия, 2010. Mang T., Dresel W. Lubricants. Manufacturing, use, properties: Hand book. Ed. V.M. Shkol’nikov (transl. engl.). Saint-Petersburg: Professiya, 2010 (In Russ.).

7. Витязь П.А., Жорник В.И., Ковалева С.А., Кукаренко В.А. Изменение структуры и свойств спеченных сплавов под влиянием наноразмерных углеродных добавок. Известия вузов. Порошковая металлургия и функциональные покрытия. 2014. No. 4. С. 12—18. Vityaz P.A., Zhornik V.I., Kovalyova S.A., Kukarenko V.A. Change of structure and properties of sintered alloys under the influence nanosized carbon addives. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Powder Metallurgy аnd Functional Coatings). 2014. No. 4 P. 12—18 (In Russ.).

8. Пугина Л.И., Синявская М.Д., Максимчук И.М. Дисульфид молибдена. Киев: Наук. думка, 1968. Pugina L.I., Sinyavskaya M.D., Maksimchuk I.M. Molybdenum disulphur. Kiev: Naukova Dumka, 1968 (In Russ.).

9. Сентюрихина Л.Н., Опарина Е.М. Твердые дисульфид-молибденовые смазки. М.: Химия, 1966. Sentyurikhina L.N., Oparina E.M. Solid molybdenum disulphur lubricants. Moscow: Khimiya, 1966 (In Russ.).

10. Бондаренко В.П. Триботехнические композиты с высокомодульными наполнителями. Киев: Наук. думка, 1987. Bondarenko V.P. Tribotechnical compositions with highmodules additives. Kiev: Naukova Dumka, 1987 (In Russ.).

11. Watanabe S., Miyake S., Murakawa M. Friction on behavior of amorphous —BN-cubic-BN dual-layered film. Surf. Coat. Technol. 1995. Vol. 76—77. Pt. 2. P. 600—603.

12. Carrapichano J.M., Gomes J.R., Silva R.F. Terminological behavior of Si3N4-BN ceramic materials for dry sliding applications. Wear. 2002. Vol. 253. P. 1070—1076.

13. Gutierrez-Mora F., Erdemir A., Goretta K.C., DominguezRodriguez A., Routbort J.L. Dry and oil-lubricated sliding wear of Si3N4 and Si3N4/BN fibrous monoliths. J. Tribol. Lett. 2005. Vol. 18. No. 2. P. 231—237.

14. Julthongpiput D., Ahn H.S., Siolorenko A., Doo-In Kim, Tsukruk V.V. Towards self-lubricated nanocoatings. Tribol. Int. 2001. Vol. 35. P. 829—836.

15. Jianxin D., Tonykun C. Self-lubricant mechanisms Via the in sitn formed tribofilm of sintered ceramics with CaF2 additions when sliding against hardened steel. Int. J. Refract. Met. Hard Mater. 2007. Vol. 25. Iss. 2. P. 189—197.

16. Roik T.A., Kholyavko V.V., Vitsuk Yu.Yu., Melnyk O.O. Influence of mechanism tribosynthesis structures for properties of antifriction composites materials based on nickel. Metallphys. Newest Techn. 2009. Vol. 31. P. 1001— 1016.

17. Астапов А.Н., Терентьева В.С. Обзор отечественных разработок в области защиты углеродсодержащих материалов от газовой коррозии и эрозии в скоростных потоках плазмы. Известия вузов. Порошковая металлургия и функциональные покрытия. 2014. No. 4. С. 50—70. Astapov A.N., Terentieva V.S. Review of home-grown technologies is the field of protection of carbon-bearing materials from gaseous corrosion and erosion in plasma’s high-speed flow. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Powder Metallurgy аnd Functional Coatings). 2014. No. 4. P. 50—70 (In Russ.).

18. Самсонов Г.В., Дворина Л.А., Рудь Б.М. Силициды. М.: Металлургия, 1979. Samsonov G.V., Dvorina L.A., Rud’ B.M. Silicides. Moscow: Metallurgiya, 1979 (In Russ.).

19. Свойства, получение и применение тугоплавких соединений: Справочник. Под ред. Т.Я. Косолаповой. М.: Металлургия, 1986. Properties, reception and application of refractorys compounds: Hand book. Ed. T.Ya. Kosolapova. Moscow: Metallurgiya, 1986 (In Russ.).

20. Knittels S., Mathieu S., Vilasi M. The oxidation behavior of uniaxial hot pressed MoSi2 in air from 400 to 1400 °C. Intermetallics. 2011. Vol. 19. Iss. 8. P. 1207—1215.

21. Сморчков Г.Ю., Рачковский А.И., Кондрохин Д.Н. Высокотемпературный антифрикционный материал: Пат. 2535419 (РФ). 2013. Smorchkov G.Yu., Rachkovskij A.I., Kondrokhin D.N. Hightemperature antifriction material: Pat. 2535419 (RF). 2013 (In Russ.).

22. Сморчков Г.Ю., Рачковский А.И., Кондрохин Д.Н. Способ изготовления высокотемпературного антифрикционного материала: Пат. 2542039 (РФ). 2013. Smorchkov G.Yu., Rachkovskij A.I., Kondrokhin D.N. A method of manufacture an high-temperature antifriction material: Pat. 2542039 (RF). 2013 (In Russ.).


Review

For citations:


Smorchkov G.Yu., Rachkovskij A.I., Baranov G.V., Kondrokhin D.N., Kurganov S.S. MoSi2–MoS2 composite antifriction material. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(1):36-42. (In Russ.) https://doi.org/10.17073/1997-308X-2022-1-36-42

Views: 399


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)