Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Porous structure features of carbon materials with extended-surface

https://doi.org/10.17073/1997-308X-2022-1-49-56

Abstract

The article provides a general overview of the production methods and applications of carbon materials with a large specific surface area. The following materials were taken as objects for the study: SK-AG-3 granular activated carbon produced by OJSC «Sorbents of Kuzbass», Kemerovo, activated cellulose fiber produced by the Krasnoyarsk Chemical Fiber Plant after carbonation, graphitization, and gas-phase activation at 900 °C in carbon dioxide current, Busofit-T carbon fabric produced by OJSC «SvetlogorskKhimvolokno», thermally expanded fluorinated graphite produced by OJSC «Siberian Chemical Combine». The porous structure of these materials was investigated by low-temperature volumetric nitrogen adsorption at the ASAP 2020 unit. Nitrogen adsorption-desorption isotherms were recorded in a relative pressure range of p/p0 = 0.05÷1.0 at 77 K. The specific surface area was estimated by the BET method based on the adsorption isotherm at p/p0 = 0.05÷0.30. The specific surface area was 485, 1241, 1156 and 290.5 m2/g for activated carbon, activated carbon fibers, Busofit-T fabric and thermally expanded graphite, respectively. The volume of mesopores and their size distribution were calculated by the Barrett-Joyner-Нalenda (BJH) method in a pressure range of p/p0 = 0.35÷0.95. The volume of micropores and their size distribution were calculated by the Horvath-Kawazoe method using the nitrogen adsorption-desorption isotherm in a relative pressure range of p/p0 = 0.00÷0.01. These methods were also used to determine the average diameter of mesopores and micropores. A comparative analysis of the results obtained was carried out. A relationship between the internal structure of the investigated materials and the porous structure properties was traced. It was shown that activated carbon, fibers, and carbon fabrics are microporous materials, and thermally expanded graphite has a mesoporous structure.

About the Authors

V. A. Gorina
JS «Research Institute of Graphite-Based Structural Materials» (JS «NIIgraphit»)
Russian Federation

researcher of the Testing Centre

111524, Moscow, Elektrodnaya str., 2 



E. G. Cheblakova
JS «Research Institute of Graphite-Based Structural Materials» (JS «NIIgraphit»)
Russian Federation

Cand. Sci. (Eng.), superior of Testing Centre



References

1. Фенелонов В.Б. Пористый углерод. Новосибирск: ИК СО РАН, 1995. Fenelonov V.B. The porous carbon. Novosibirsk: IK SO RAN, 1995 (In Russ.).

2. Phan N.H., Rio S., Faur C., Coq L.L., Cloirec P.L., Nguyen T.H. Production of fibrous activated carbons from natural (jute, coconut) fibers for water treatment applications. Carbon. 2006. Vol. 44. P. 2569—2577. DOI: 10.1016/j.carbon.2006.05.048.

3. Фридман Л.И. Углеволокнистые адсорбенты, теоретические основы получения. Хим. волокна. 2010. No. 5. С. 30—32. Fridman L.I. Carbon fiber adsorbents, theoretical bases of reception. Khimicheskie volokna. 2010. No. 5. P. 30—32 (In Russ.).

4. Кузнецов Б.Х. Синтез и применение углеродных сорбентов. М.: Химия, 1999. Kuznetsov B.H. Synthesis and use of carbon adsorbents. Moscow. Khimiya, 1999 (In Russ.).

5. Золкин П.И., Островский В.С. Углеродные материалы в медицине. М.: Металлургиздат, 2014. Zolkin P.I., Ostrovskii V.S. Carbon materials in medicine. Moscow: Metallurgizdat, 2014 (In Russ.).

6. Афанасов И.М., Шорникова О.Н., Власов И.И., Коган Е.В. Пористые углеродные материалы на основе терморасширенного графита. Вестн. ДВО РАН. 2009. No. 2. С. 171—175. Afanasov I.M, Shornikova O.N., Vlasov I.I., Kogan E.V. Porous carbon materials based on thermally expanded graphite. Vestnik DVO RAN. 2009. Vol. 2. Р. 171—175 (In Russ.).

7. Мухин В.М., Уганов П.В. Получение активированного угля на основе антрацита. Исследование его пористости и адсорбционных свойств. Успехи в химии и хим. технологии. 2013. No. 5. С. 35—42. Mukhin V.M., Uganov P.V. Getting activated carbon based on anthracite. Investigation of its porosity and adsorption properties. Uspekhi v khimii i khimicheskoi tekhnologii. 2013. Vol. 5. P. 35—42 (In Russ.).

8. Чеснокова Н.В., Миковаб Н.М., Иванов И.П., Кузнецова Б.Н. Получение углеродных сорбентов химической модификацией ископаемых углей и растительной биомассы. Журн. Сиб. федер. ун-та. Химия. 2014. No. 7. С. 42—53. Chesnokova N.V., Mikovab N.M., Ivanov I.P., Kuznetsova B.N. Obtaining carbon sorbents by chemical modification of fossil coals and plant biomass. Zhurnal Sibirskogo Federal’nogo Universiteta. Khimiya. 2014. Vol. 7. P. 42—53 (In Russ.).

9. Олонцев В.Ф., Фарберова Е.А., Минькова А.Л., Генералова К.Н., Белоусов К.С. Оптимизация пористой структуры активированных углей в процессе технологии производства. Вестн. ПНИПУ. 2015. No. 4. С. 9—20. Olontsev V.F., Farberova E.F., Min’kova A.L., Generalova K.N., Belousov R.S. Optimisation of porous structure of absorbent carbon in the of technological production. Vestnik PNIPU. 2015. Vol. 4. P. 9—20 (In Russ.).

10. Горина В.А., Чеблакова Е.Г., Золкин П.И. Влияние режимов термической обработки на удельную поверхность и пористую структуру углеродных волокон на основе вискозы. Порошковая металлургия. 2012. No. 4. С. 62—65. Gorina V.A., Cheblakova E.G., Zolkin P.I. Effect of heat treatment on the specific surface area and pore structure of the carbon fibers based on viscose. Poroshkovaya metallurgiya. 2012. No. 4. P. 62—65 (In Russ.).

11. Beck N.V., Meech S.E., Norman P.R., Pears L.A. Characterisation of surface oxides on carbon and their influence on dynamic adsorbtion. Carbon. 2002. Vol. 40. P. 531— 540.

12. Celzard A., Mareche J.F., Furdin G. Modelling of exfoliated graphite. Progr. Mater. Sci. 2005. Vol. 50. No. 1. P. 93— 179.

13. Barrett E.P., Joyner L.G., Halenda P.H. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Amer. Chem. Soc. 1951. Vol. 73. No. 1. Р. 373—380.

14. Horvath G., Kawazoe K. Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn. 1983. No. 16. P. 470—475. https://doi.org/10.1252/jcej.16.470.

15. Грэг С., Синг К. Адсорбция, удельная поверхность, пористость. М.: Мир, 1984. Greg S., Sing K. Adsorption, surface area and porosity. Moscow: Mir, 1984 (In Russ.).

16. Thommes M., Kaneko K., Neimark A., Olivier J., Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015. Vol. 87. Р. 1051—1070.

17. Дубинин М.М. Адсорбция и пористость. В сб.: Современные проблемы теории адсорбции. М.: Наука, 1995. С. 34—42. Dubinin M.M. Adsorption and porosity. In: Modern problems of the theory of adsorption. Moscow: Nauka, 1995. P. 34—42 (In Russ.).

18. Everett D.H. Manual of symbols and terminology for physicochemical quantities and units. Appendix II: Definitions, terminology and symbols in colloid and surface chemistry. Part 1. Colloid and surface chemistry. Pure. Appl. Chem. 1972. Vol. 31. P. 577—638.

19. Cychosz K.A., Guillet-Nicolas R., Gracía-Martínez J., Thommes M. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem. Soc. Rev. 2000. Vol. 46. P. 389—414.

20. Темирханов Б.А., Султыгова З.Х., Саламов А.Х., Нальгиева А.М. Новые углеродные материалы для ликвидации разливов нефти. Фундам. исследования. 2012. No. 6 (ч. 2). С. 471—475. Temirkhanov B.A., Sultygova Z.Kh., Salamov A.Kh., Nalgieva A.M. New carbon materials for oil spill response. Fundamental’nye issledovaniya. 2012. No. 6 (part 2). Р. 471—475 (In Russ.).

21. Phadungbut P., Herrera L.F., Do D.D., Tangsathitkulchai C., Nicholson D., Junpirom S. Computational methodology for determining textural properties of simulated porous carbons. Colloid Interface Sci. 2017. Vol. 503. P. 28—38.

22. Hakan Demiral, İlknur Demiral, Fatma Tümsek, Belgin Karabacakoğlu. Pore structure of activated carbon prepared from hazelnut bagasse by chemical activation. 2008. 04 February. https://doi.org/10.1002/sia.2631. Cited by: 29 ePDFPDFTOOLS SHARE.

23. Ho C., Qian K.K., Bismarck H.A. Carbon fiber: Surface properties. In: Wiley Encyclopedia of Composites. 2011. P. 1—11.

24. Goodhew P.J., Clarke A.J., Bailey J.E. Review of fabrication and properties of carbon-fibers. Mater. Sci. Eng. 1975. Vol. 17. P. 3—30.

25. Martinez-Alonzo A. Microporous texture of activated carbon fibers prepared from aramid fiber pulp. Microporous Mater. 1997. No. 11. P. 303—311.

26. Uraki Y., Nakatani A., Kubo S., Sano Y. Preparation of activated carbon fibers with large specific surface area from softwood acetic acid lignin. J. Wood. Sci. 2001. Vol. 47. P. 465—469. DOI: 10.1007/BF00767899.

27. Shibagaki K., Motojima S., Umemoto Y., Nishitanib Y. Outermost surface microstructure of as-grown, heattreated and partially oxidized carbon microcoils. Carbon. 2001. Vol. 39. P. 1337—1342.

28. Ханов А.М., Макарова Л.Е., Дегтярев А.И., Караваев Д.М., Смирнов Д.В., Исаев О.Ю. Особенности строения терморасширенного графита. Неорган. материалы. 2014. Т. 50. No. 4. C. 372—376 Khanov A.M., Makarova L.E., Degtyarev A.I., Karavaev D.M., Smirnov D.V., Isaev O.Yu. Features of the structure of thermally expanded graphite. Neorganicheskie materially. 2014. Vol. 50. No. 4. P. 372—376 (In Russ.).


Review

For citations:


Gorina V.A., Cheblakova E.G. Porous structure features of carbon materials with extended-surface. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(1):49-56. (In Russ.) https://doi.org/10.17073/1997-308X-2022-1-49-56

Views: 746


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)