Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Crack resistance, strength and dynamic fatigue of quartz fibers with copper coatings

https://doi.org/10.17073/1997-308X-2022-1-57-65

Abstract

Metallized coatings can significantly improve the operational properties of quartz fibers. The research was conducted to determine the crack resistance, strength and dynamic fatigue of optical fibers without any coating and with copper coatings. The microhardness of quartz fibers was measured by the diamond indentation of end surfaces. The stress intensity parameter K1c was found from the A. Niihara semi-empirical dependence. The geometry of indentation and radial cracks was studied using a scanning electron microscope. The crack resistance of uncoated quartz turned out to be almost 3 times less as compared to the copper coating fiber, which is presumably due to the additive contribution of compressive stresses on fiber surfaces and quartz wetting with copper. Copper-coated optical fiber drawing increases the tensile strength, crack resistance and dynamic fatigue parameter, and it is the main resource for maintaining operation in the conditions of a statistical approach to structural strength. Comparative tests were conducted to check the optical fiber strength by two-point bending and axial tension methods. Experimental tests conducted to check the ultimate mechanical strength of quartz optical fibers showed a significant spread of data, which indicates the presence of cracks of various sizes in a brittle solid and is a characteristic feature of brittle fracture as suggested by the A. Griffiths theory. In addition, it was assumed that the chaotic distribution of defects and microcracks extends along the entire length of a brittle solid, a quartz optical fiber in this case. A statistical model based on the Weibull distribution was used to describe surface microcracks depending on the fiber length. As a result, Weibull graphs were plotted in coordinates connecting the probability of failure with the strength, fiber length and parameter describing the ultimate strength.

About the Authors

M. I. Bulatov
Perm National Research Polytechnic University
Russian Federation

postgraduate student of the Department «Metal science, heat and laser treatment of metals»

614990, Perm, Komsomolskii pr., 29



A. A. Shatsov
Perm National Research Polytechnic University
Russian Federation

Dr. Sci. (Eng.), prof. of the Department «Metal science, heat and laser treatment of metals» 

Perm



N. S. Grigoryev
Perm National Research Polytechnic University
Russian Federation

undergraduate student of the Department of general physics 

Perm



N. A. Malkov
Perm State National Research University
Russian Federation

undergraduate student of the Department of nanotechnology and microsystem technology

614068, Perm, Bukireva str., 15 



References

1. Wuilpart M., Gusarov A., Leysen W., Batistoni P., Moreau P., Dandu P., Megret P. Polarimetric optical fibre sensing for plasma current measurement in thermonuclear fusion reactors. In: Proc. 22-nd Intern. conf. on transparent optical networks (ICTON). Bari, Italie, 2020. P. 1—4. DOI: 10.1109/ICTON51198.2020.9203467.

2. Li Bo, Zhao J., Pan A., Mirzazadeh M., Ekici M., Zhou Q., Liu W. Stable propagation of optical solitons in fiber lasers by using symbolic computation. Int. J. Light Electr. Optics. 2019. Vol. 178. P. 142—145. DOI: 10.1016/j.ijleo.2018.09.135.

3. Stolov A.A., Simoff D.A., Jie Li. Thermal stability of specialty optical fibers. J. Lightwave Technol. 2008. Vol. 26. P. 3443—3451. DOI:10.1109/jlt.2008.925698.

4. Булатов М.И., Азанова И.С., Косолапов А.Ф., Смирнова А.Н., Саранова И.Д. Исследование влияния отрицательных температур на оптические потери волоконного световода в защитно-упрочняющем покрытии на основе полиамидокислоты. Кр. сообщ. по физике ФИАН. 2019. No. 9. C. 9—13. Bulatov M.I., Azanova I.S., Kosolapov A.F., Smirnova A.N., Saranova I.D. Effect of below-freezing temperature on optical loss of polyimide-coated optical fibers. Bull. Lebedev Phys. Inst. 2019. Vol. 46. No. 9. P. 9—13. DOI: 10.3103/S1068335619090021.

5. Alexis Mendez, Morse T.F. Specialty optical fibres handbook. Acad. Press, Elsiver, 2007.

6. DiMarcello F.V., Hart A.C., Williams J.C., Kurkjian C.R. High strength furnace-drawn optical fibers. In: Fiber optics: Advances in research and development. N.Y.: Plenum Publ. Corp., 1979. P. 125—135. DOI: 10.1007/978-1-4684-3492-7_7.

7. Griffith A.A. The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. London. Ser. A. 1920. Vol. 221. P. 163—198.

8. Irwin G.R. Analysis of Stresses and Strains near the end of a crack traversing a plate. J. Appl. Mech. 1957. Vol. 24. P. 361—364.

9. Muraoka M., Abe H. Subcritical crack growth in silica optical fibers in wide range of crack velocities. J. Am. Ceram. Soc. 1996. Vol. 79(1). P. 51—57. DOI: 10.1111/j.1151-2916.1996.tb07879.x.

10. Колесников Ю.В., Морозов Е.М. Механика контактного разрушения. М.: Наука, 1989. Kolesnikov Yu.V., Morozov E.M. Contact fracture mechanics. Moscow: Nauka, 1989 (In Russ.).

11. Arridge R.G.C., Heywood D. The freeze-coating of filaments. Brit. J. Appl. Phys. 1967. Vol. 18. P. 447—457.

12. Pinnow D.A., Robertson G.D., Wysocki J.A. Reductions in static fatigue of silica fibers by hermetic jacketing. Appl. Phys. Lett. 1979. Vol. 34 (1). P. 17—19.

13. Severin I., Rochdi El Abdi. Mechanical and chemical characteristics of hermetically coated silica optical fibre. Surf. Coat. Technol. 2008. Vol. 202. P. 2494—2499.

14. Гогоци Г.А., Башта А.В. Исследование керамики при внедрении алмазной пирамиды Виккерса. Пробл. прочности. 1990. No. 9. С. 49—54. Gogotsi G.A., Bashta A.V. The study of ceramics with the Vickers diamond pyramid. Problemy prochnosti. 1990. No. 9. P. 49—54 (In Russ.).

15. Matthewson M.J., Kurjian C.R., Gulati S.T. Strength measurement of optical fibers by bending. J. Am. Ceram. Soc. 1986. Vol. 69 (11). P. 815—821. DOI: 10.1111/j.1151-2916.1986.tb07366.x

16. Griffioen W. Effect of nonlinear elasticity on measured fatigue data and lifetime estimations of optical fibers. J. Am. Ceram. Soc. 1992. Vol. 75 (10). P. 2692—2696.

17. Wiederhorn S.M. Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 1967. Vol. 50 (8). P. 407—414. DOI: 10.1111/j.11512916.1967.tb15145.x

18. Biriukov A.S., Bogatyrjov V.A., Lebedev V.F., Sysolyatin A.A., Khitun A.G. Strength and reliability of metal-coated optical fibers at high temperatures. MRS Online Proceeding Library. 1998. Vol. 531. P. 297—300. DOI: 10.1557/PROC-531-297.

19. Weibull W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951. Vol. 18. P. 293—297.

20. Булатов М.И., Шацов А.А. Прочность и трещиностойкость кварцевых волокон с полиимидными покрытиями. Известия вузов. Порошковая металлургия и функциональные покрытия. 2021. Т. 15. No. 2. С. 22—30. Bulatov M.I., Shatsov A.A. Strength and crack resistance of quartz fibers with polyimide coatings. Izvestiya Vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya (Powder Metallurgy and Functional Coatings). 2021. Vol. 15. No. 2. P. 22—30 (In Russ.).

21. Байкова Л.Г., Песина Т.И., Kurkjian C.R., Tang Zh., Киреенко М.Ф., Тихонова Л.В. О методике определения истинной прочности неорганических стекол. Журн. техн. физики. 2003. Т. 83. С. 55—60. Baikova L.G., Pesina T.I., Kurkjian C.R., Tang Zh., Kireenko M.F., Tikhonova L.V. On the method for determining the true strength of inorganic glasses. Zhurnal tekhnicheskoi fiziki (Technical Physics Journal). 2003. Vol. 83. P. 55—60 (In Russ.).

22. Kurkjian C.R., Gupta P.K., Brow R.K., Lower N. The intrinsic strength and fatigue of oxide glasses. J. Non-Crystal. Solids. 2003. Vol. 316. P. 114—124.

23. Zhangwei Ma., Zhifeng W., Huanhuan Liu, Fufei P., Zhenyi C., Tianxing W. Tensile strength and failure behavior of bare mode fibers. Opt. Fiber Tecnol. 2019. Vol. 52. P. 1—5. DOI: 10.1016/j.yofte.2019.101966.

24. Bogatyrjov V.A., Bubnov M.M., Dianov E.M., Makarenko A.Y., Rumyantsev S.D., Semjonov S.L., Sysoljatin A.A. High-strength hermetically tin-coated optical fibers. Opt. Fiber Communic. 1991. Vol. 4. Paper WL9. P. 115. DOI: 10.1364/ofc.1991.wl9.

25. Tuzzolo M.R., Allegretto A.E., Urruti E.H. Hermetic product performance: ensuring the uniformity of the carbon layer. Proc. Int. Wire Cable Symp. 1993. P. 381—385.

26. Иоффе М.А. Теория литейных процессов: Учеб. пос. в 2 т. Т. 1. СПб.: Изд-во СЗТУ. 2009. Ioffe M.A. The theory of foundry processes: an educational and methodological complex. Vol. 1. St. Petersburg: Izd-vo SZTU, 2009 (In Russ.).

27. Колачев Б.А., Ливанов В.А., Елагин В.И. Металловедение и термическая обработка цветных металлов и сплавов. М.: Металлургия, 1981. Kolachev B.A., Livanov V.A., Elagin V.I. Metallurgy and heat treatment of non-ferrous metals and alloys. Moscow: Metallurgiya, 1981 (In Russ.).


Review

For citations:


Bulatov M.I., Shatsov A.A., Grigoryev N.S., Malkov N.A. Crack resistance, strength and dynamic fatigue of quartz fibers with copper coatings. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(1):57-65. (In Russ.) https://doi.org/10.17073/1997-308X-2022-1-57-65

Views: 486


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)