Mechanical properties and wear resistance of Fe–Ni–Cu-based metal matrix composites reinforced with hollow corundum microspheres
https://doi.org/10.17073/1997-308X-2022-1-66-75
Abstract
This paper focuses on the development of composite materials based on the Fe–Ni–Cu alloy with hollow corundum microspheres (HCM). The composites were produced by means of powder metallurgy: by mixing initial metallic powders in various types of mixers followed by hot pressing. Compact samples of Fe–Ni–Cu + HCM composites featured high relative density and microstructure homogeneity. The introduction of HCM leads to a decrease in strength to 30 % (from 1125 MPa to 800 MPa at a HCM concentration of 15 vol.%). However, resulting composite materials retained high plasticity. It was established by the micromechanical modeling method that such composites have stress concentration regions not at the interface between HCM and the matrix, but on the inner surface of microspheres. On the contrary, the adjacent matrix volume around HCM features stress relaxation and «unloaded» regions formed. HCM introduction into the matrix based on the Fe–Ni–Cu alloy increases wear resulting from friction on M300 concrete by 50–170 % with a grain size of 70–100 μm and by 160–325 % with a grain size of 100–140 μm. During friction, HCMs act as a reservoir for debris (concrete particles), so the matrix surface remains free of wear products and directly contacts the material processed. The heavy wear of composites with HCM makes them promising for use as a binder in diamond tools designed for the dry cutting of concrete and reinforced concrete.
About the Authors
M. Ya. BychkovaRussian Federation
Cand. Sci. (Eng.), research scientist of Scientific-Educational Center of SHS MISIS–ISMAN, research scientist of the Laboratory «In situ diagnostics of structural transformations», senior lecturer of the Department of powder metallurgy and functional coatings
119991, Moscow, Leninskii pr., 4
O. S. Manakova
Russian Federation
Cand. Sci. (Eng.), head of laboratory of Scientific-Educational Center
Moscow
A. S. Akhmetov
Russian Federation
department assistant of the Department of powder metallurgy and functional coatings
Moscow
A. Kaysinov
Russian Federation
master’s student of the Department of powder metallurgy and functional coatings
Moscow
E. N. Avdeenko
Russian Federation
Cand. Sci. (Eng.), junior research scientist of the Laboratory «In situ diagnostics of structural transformations»
Moscow
P. A. Loginov
Russian Federation
Cand. Sci. (Eng.), senior research scientist of the Laboratory «In situ diagnostics of structural transformations», senior lecturer of the Department of powder metallurgy and functional coatings
Moscow
S. Vorotilo
Russian Federation
Cand. Sci. (Eng.), junior research scientist of the Laboratory «In situ diagnostics of structural transformations»
Moscow
References
1. Loginov P.A., Sidorenko D.A., Levashov E.A., Petrzhik M.I., Bychkova M.Ya., Mishnaevsky Jr.L. Hybrid metallic nanocomposites for extra wear-resistant diamond machining tools. Int. J. Refract. Met. H. 2018. Vol. 71. P. 36—44.
2. Konstanty J. Powder metallurgy diamond tools. Oxford: Elsevier, 2006.
3. Konstanty J.S., Tyrala D. Wear mechanism of iron-base diamond-impregnated tool composites. Wear. 2013. Vol. 303. Iss. 1—2. P. 533—540.
4. Malevich N., Müller C.H., Dreier J., Kansteiner M., Biermann D., De Pinho Ferreira M., Tillmann W. Experimental and statistical analysis of the wear of diamond impregnated tools. Wear. 2021. Vol. 468—469. Paper 203574.
5. Liu W., Gao D. Study on the anti-wear performance of diamond impregnated drill bits. Int. J. Refract. Met. H. 2021. Vol. 99. Paper 105577.
6. Mechnik V.A., Bondarenko N.A., Kolodnitskyi V.M., Zakiev V.I., Zakiev I.M., Ignatovich S.R., Yutskevych S.S. Mechanical and tribological properties of Fe—Cu—Ni—Sn materials with different amounts of CrB2 used as matrices for diamond-containing composites. J. Superhard Mater. 2020. Vol. 4. P. 251—263.
7. Mechnik V.A., Bondarenko M.O., Kolodnitskyi V.M., Zakiev V.I., Zakiev I.M., Kuzin M., Gevorkyan E.S. Influence of diamond—matrix transition zone structure on mechanical properties and wear of sintered diamond-containing composites based on Fe—Cu—Ni—Sn matrix with varying CrB2 content. Int. J. Refract. Met. H. 2021. Vol. 100. Paper 105655.
8. Mechnik V.A., Bondarenko N.A., Dub S.N., Kolodnitskyi V.M., Nesterenko Yu.V., Kuzin N.O., Zakiev I.M., Gevorkyan E.S. A study of microstructure of Fe—Cu—Ni— Sn and Fe—Cu—Ni—Sn—VN metal matrix for diamond containing composites. Mater. Charact. 2018. Vol. 146. P. 209—216.
9. Loginov P.A., Sidorenko D.A., Shvyndina N.V., Sviridova T.A., Churyumov A.Yu., Levashov E.A. Effect of Ti and TiH2 doping on mechanical and adhesive properties of Fe— Co—Ni binder to diamond in cutting tools. Int. J. Refract. Met. H. 2019. Vol. 79. P. 69—78.
10. Lv X., Lin Z., Zhu Y., Zhao J., Zhao G. Effect of PMMA pore former on microstructure and mechanical properties of vitrified bond CBN grinding wheels. Ceram. Int. 2013. Vol. 39. P. 1893—1899.
11. Mao J.B., Zhang F.L., Liao G.C., Zhou Y.M., Huang H.P., Wang C.Y., Wu S.H. Effect of granulated sugar as pore former on the microstructure and mechanical properties of the vitrified bond cubic boron nitride grinding wheels. Mater. Design. 2014. Vol. 60. P. 328—333.
12. Ding W.F., Xu J.H., Chen Z.Z., Yang C.Y., Song C.J., Fu Y.C. Fabrication and performance of porous metal-bonded CBN grinding wheels using alumina bubble particles as pore-forming agents. Int. J. Adv. Manuf. Technol. 2013. Vol. 67. P. 1309—1315.
13. Zhao B., Yu T., Ding W., Li X. Effects of pore structure and distribution on strength of porous Cu—Sn—Ti alumina composites. Chinese J. Aeronaut. 2017. Vol. 30 (6). P. 2004—2015.
14. Wang C.C., Zhang F.L., Pan J.S., Mao J.B., Long Y., Huang H.P., Wang C.Y., Lin H.T., Deng X., Wu S.H. An experimental study on preparation of vitrified bond diamond grinding wheel with hollow spherical corundum granules as pore former. Int. J. Adv. Manuf. Technol. 2017. Vol. 93. P. 595—603.
15. Wu Y., Yan Q., Zhang X. Wear behavior of metal bond diamond composite with hollow spherical silica particles as pore former. Int. J. Adv. Manuf. Technol. 2019. Vol. 104. P. 4757—4767.
16. Yin Y., Fang J., Xue Q. Effect of fly ash cenosphere pore formers on the microstructure and mechanical properties of vitrified diamond grinding wheels. Int. J. Refract. Met. H. 2017. Vol. 67. P. 82—89.
17. Yin Y., Xu P., Fang J., Yang J. Effect of fly ash cenosphereSiO2 core-shell microspheres on physical properties and microstructures of vitrified bond diamond tools. Diam. Relat. Mater. 2020. Vol. 103. Paper 107703.
18. Перегудов А.Б., Ешидоржиев В.Д., Петржик М.И., Климова А.И. Оценка износостойкости искусственных гарнитурных зубов in vitro при модельном возвратно-поступательном движении. Стоматология для всех: International Dental Review. 2013. No. 4. С. 20—25. Peregudov A.B., Eshidorzhiev V.D., Petrzhik M.I., Klimova A.I. Evaluation of the wear resistance of artificial garniture teeth in vitro during model reciprocating motion. Stomatologiya dlya vsekh (International Dental Review). 2013. No. 4. P. 20—25 (In Russ.).
19. Petrzhik M.I., Levashov E.A. Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing. Crystallogr. Rep. 2007. Vol. 52. Iss. 6. P. 966—974.
20. Петржик М.И., Филонов М.Р., Печеркин К.А., Левашов Е.А., Олесова В.Н., Поздеев А.И. Износостойкость и механические свойства сплавов медицинского назначения. Известия вузов. Цветная металлургия. 2005. No. 6. С. 62—69. Petrzhik M.I., Filonov M.R., Pecherkin K.A., Levashov E.A., Olesova V.N., Pozdeev A.I. Wear resistance and mechanical properties of medical alloys. Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy). 2005. Vol. 6. P. 62—69 (In Russ.).
21. Xuan C., Shibata H., Sukenaga S., Jonsson P.G., Nakajima K. Wettability of Al2O3, MgO and Ti2O3 by liquid iron and steel. ISIJ Int. 2015. Vol. 55. No. 9. P. 1882—1890.
22. Raghavan V. Al—Fe—O (aluminum-iron-oxygen). J. Phase Equilib. Diff. 2010. Vol. 31. P. 367.
23. Puso M.A., Sanders J., Settgast R., Liu B. An embedded mesh method in a multiple material ALE. Comput. Method. Appl. M. 2012. Vol. 245—246. P. 273—289.
24. Zhang P., Karimpour M., Balint D., Lin J., Farrugia D. A controlled Poisson Voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis. Comp. Mater. Sci. 2012. Vol. 64. P. 84—89.
25. Loginov P.A., Avdeenko E.N., Zaitsev A.A., Levashov E.A. Structure and properties of powder alloys Fe—(45— 15)%Ni—(10—5)%Cu, obtained via mechanical alloying. CIS Iron Steel Rev. 2021. Vol. 22. P. 82—87.
Review
For citations:
Bychkova M.Ya., Manakova O.S., Akhmetov A.S., Kaysinov A., Avdeenko E.N., Loginov P.A., Vorotilo S. Mechanical properties and wear resistance of Fe–Ni–Cu-based metal matrix composites reinforced with hollow corundum microspheres. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(1):66-75. (In Russ.) https://doi.org/10.17073/1997-308X-2022-1-66-75