Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Effect of iron addition on the structure and properties of copper-based friction powder material used under friction conditions with lubrication

https://doi.org/10.17073/1997-308X-2022-1-76-87

Abstract

Machines and mechanisms contain units responsible for their movement and stopping, and such units use friction materials. These units include oil-cooled brakes, hydromechanical transmissions, and clutches. They use mainly copper-based friction materials providing the high coefficient of friction and wear resistance. These materials feature by effective heat dissipation since a large amount of heat is released in these areas for a short period of time. The paper presents the results of studies into the effect of iron addition into a frictional powder material based on BrO6 and BrO12 bronze on its structure, mechanical and tribotechnical properties. It was shown that the introduction of iron contributes to an increase in the coefficient of friction from 0.034 to 0.055 for the BrO6-based friction material and from 0.042 to 0.073 for the BrO12-based friction material. It was determined that the ultimate compression strength of the BrO12-based friction material is 340 MPa without iron addition, 310 MPa at 10 vol.% of iron, and 180 MPa at 50 vol.% of iron. This is due to the fact that the iron content of more than 30 vol.% results in the change of the frame structure of the material to the matrix one having a sintering temperature higher than the temperature used in the paper for friction material sintering. It was found that for the BrO6-based friction material there are both rounded and elongated inclusions in the copper phase up to 2.5 μm in size with the iron content of 30–50 %. In the BrO12-based material there are more iron inclusions in the copper phase and their size are much larger, the length of inclusions reaches 20 μm, and the iron content in them is 49–73 %.

About the Authors

A. Ph. Ilyushchanka
Institute of Powder Metallurgy (IPM) n.a. acad. O.V. Roman of National Academy of Sciences of Belarus
Belarus

Dr. Sci. (Eng.), prof., academician of National Academy of Sciences of Belarus (NASB), director

220005, Belarus, Minsk, Platonova str., 41 



A. V. Liashok
Institute of Powder Metallurgy (IPM) n.a. acad. O.V. Roman of National Academy of Sciences of Belarus
Belarus

Cand. Sci. (Eng.), leading researcher 

Minsk



L. N. Dyachkova
Institute of Powder Metallurgy (IPM) n.a. acad. O.V. Roman of National Academy of Sciences of Belarus
Belarus

Dr. Sci. (Eng.), associate prof., leading researcher, head of Laboratory 

Minsk



V. P. Biryukov
Institute of Mechanical Engineering n.a. A.A. Blagonravov of Russian Academy of Sciences
Russian Federation

Cand. Sci. (Eng.), leading researcher of the Laboratory «Physical methods of friction surface hardening»

101000, Moscow, Malyi Khariton’evskii per., 4



References

1. Шарипов В.М. Проектирование механических, гидромеханических и гидрообъемных передач тракторов. М.: МГТУ МАМИ, 2002. Sharipov V.M. Design of mechanical, hydromechanical and hydrostatic tractors’ transmissions. Moscow: MGTU MAMI, 2002 (In Russ.).

2. Шарипов В.М. Конструирование и расчет тракторов. М.: Машиностроение, 2004. Sharipov V.M. Design and calculation of tractors. Moscow: Mashinostroenie, 2004 (In Russ.).

3. Jen T.-C., Nemecek D.J. Thermal analysis of a wet-disk clutch subjected to a constant energy engagement. Int. J. Heat Mass Transfer. 2008. Vol. 51. P. 1757—1769.

4. Ost W., Baets P. De, Degrieck J. The tribological behaviour of paper friction plates for wet clutch application investigated on SAE and pin-on-disk test rigs. Wear. 2001. Vol. 249. P. 361—371.

5. Ma W.L., Lu J.J. Effect of sliding speed on surface modification and tribological behavior of copper— graphite composite. Tribol. Lett. 2011. Vol. 41. P. 363—370.

6. Kato H., Takama M., Iwai Y., Washida K., Sasaki Y. Wear and mechanical properties of sintered copper—tin composites containing graphite or molybdenum disulfide. Wear. 2003. Vol. 255. P. 573—578.

7. Ghorbani M., Mazaheri M., Afshar A. Wear and friction characteristics of electrodeposited graphite—bronze composite coatings. Surf. Coat. Technol. 2005. Vol. 190. P. 32—38.

8. Kestursatya M., Kim J.K., Rohatgi P.K. Wear performance of copper—graphite composite and a leaded copper alloy. Mater. Sci. Eng. A. 2003. Vol. 339. P. 150—158.

9. Katsuyoshi K. Wet sintered friction material, manufacture therefor, and wet friction engagement plate: Pat. JPH0861406A (JP). 1996.

10. Wet copper-sintered friction material, its production, and friction plate using the same: Pat. JP2000096037A (JP). 2000.

11. Katsuyoshi K., Yoshie K. Sintered friction material, composite copper alloy powder used therefor and their production: Pat. JPH08253826A (JP). 1996.

12. Fumio I., Tadashi K., Asabe K., Osamu K. Sintered friction material for high-speed rail: Pat. WO2012133513A1 (JP). 2012.

13. Si Lina, Liu Cheng, Hongjuan Yan, Yanjie Wang, Ye Yang, Shuting Zhang, Yuyan Zhang. The influences of high temperature on tribological properties of Cu-based friction materials with a friction phase of SiO2/SiC/Al2O3. AIP Advances. 2021. Vol. 11. Iss. 2. Paper 025335. P. 1—9. https://doi.org/10.1063/5.0040220.

14. Haohao Z., Xu R., Weiwei Z., Yong W., Siqi Z., Zhikang H. Tribological behavior of copper—graphite composites reinforced with cu-coated or uncoated SiO2 particles. Materials. 2018. Vol. 11. P. 2—12. DOI: 10.3390/ma11122414.

15. Лешок А.В., Ильющенко А.Ф., Дьячкова Л.Н., Пинчук Т.И. Триботехнические свойства порошкового фрикционного материала на основе меди с добавкой порошка железо-хромистого сплава. Трение и износ. 2021. Т. 42. No. 1. С. 5—12. Liashok A.V., Ilyushchanka A.Ph., Dyachkova L.N., Pinchuk T.I. Tribotechnical properties of powder friction material based on copper with the addition of ironchromium alloy powder. Trenie i iznos. 2021. Vol. 42. No. 1. P. 5—12 (In Russ.).

16. Лешок А.В., Ильющенко А.Ф., Дьячкова Л.Н., Пинчук Т.И. Триботехнические свойства порошкового фрикционного материала на основе меди с добавкой порошка титана. Трение и износ. 2021. Т. 42. No. 2. С. 128—135. Liashok A.V., Ilyushchanka A.Ph., Dyachkova L.N., Pinchuk T.I. Tribotechnical properties of powder friction material based on copper with the addition of titanium powder. Trenie i iznos. 2021. Vol. 42. No. 2. P. 128—135 (In Russ.).

17. Федорченко И.М. Современные фрикционные материалы. Киев: Наук. думка, 1975. Fedorchenko I.M. Modern friction materials. Kiev: Naukova Dumka, 1975 (In Russ.).

18. Материалы антифрикционные порошковые на основе меди. Марки. ГОСТ 26719-85. М.: Госстандарт СССР, 1985. Antifriction powder materials based on copper. Marks. GOST 26719-85. Moscow: Gosstandart SSSR, 1985 (In Russ.).

19. Федорченко И.М., Пугина Л.И. Композиционные спеченные антифрикционные материалы. Киев: Наук. думка, 1980. Fedorchenko I.M., Pugina L.I. Sintered composite antifriction materials. Kiev: Naukova Dumka, 1980 (In Russ.).

20. Дьячкова Л.Н. Получение антифрикционных композиционных порошковых инфильтрованных материалов на основе железа для тяжело нагруженных узлов трения: Автореф. дис. … докт. техн. наук. Минск: НПО порошковой металлургии, 2013. Dyachkova L.N. Production antifriction composite powder infiltrated materials based on iron for heavily loaded friction units: Abstract of a thesis of the dissertation of Dr. Sci. (Eng.). Minsk: Sci. Ind. Association of Powder Metallurgy, 2013 (In Russ.).

21. Ильющенко А.Ф., Лешок А.В., Дьячкова Л.Н., Алексеенко Н.А. Особенности изнашивания порошкового фрикционного материала на основе меди в условиях граничного трения. Трение и износ. 2019. No. 6. С. 654—660. Ilyushchanka A.Ph., Liashok A.V., Dyachkova L.N., Alekseenko N.A. Features of powder friction material wear based on copper under conditions of boundary friction. Trenie i iznos. 2019. No. 6. P. 654—660 (In Russ.).

22. Ильющенко А.Ф., Дмитрович А.А., Лешок А.В. Исследование микропрофиля поверхности диска стального, работающего в различных узлах трения в паре с металлокерамическим фрикционным материалом МК-5. Материалы, технологии, инструменты. 2014. Т. 19. No. 1. С. 26—31. Ilyushchanka A.Ph., Dmitrovich A.A., Liashok A.V. Research of the microprofile of the surface of a steel disk operating in various friction units paired with a cermet friction material MK-5. Materialy, tekhnologii, instrumenty. 2014. Vol. 19. No. 1. P. 26—31 (In Russ.).

23. Дьячкова Л.Н., Фельдштейн Е.Э., Витязь П.А. Влияние содержания железа на трибологические характеристики спеченных оловянисто-железистых бронз. Трение и износ. 2018. No. 3. С. 173—178. Dyachkova L.N., Feldshtein E.E., Vityaz P.A. On the effect the iron content on the tribological properties of sintered tin-irin bronze. Trenie i iznos. 2018. No. 3. P. 173—178 (In Russ).


Review

For citations:


Ilyushchanka A.P., Liashok A.V., Dyachkova L.N., Biryukov V.P. Effect of iron addition on the structure and properties of copper-based friction powder material used under friction conditions with lubrication. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(1):76-87. (In Russ.) https://doi.org/10.17073/1997-308X-2022-1-76-87

Views: 431


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)