Radar-absorbing composite materials based on ferrite powders
https://doi.org/10.17073/1997-308X-2022-2-13-21
Abstract
The paper studies the effect of particle sizes of hexagonal ferrite powders on their electrodynamic properties. SrTi0.2Co0.2Fe11.6O19 and BaSc0.2Fe11.8O19 hexaferrites were used as the objects of research. Grinding in a high-energy planetary mill for up to 60 minutes made it possible to obtain hexaferrite powder particles with the average size successively decreasing from 1.5–2 μm to 0.05–0.15 μm. A scanning electron microscope was used for the analysis. Samples were prepared in a mixture with a polymer binder (70% ferrite + 30% polymer), and their electromagnetic radiation (EMR) absorbing capacity was studied in the microwave range from 30 to 50 GHz. It was shown that there is practically no peak corresponding to ferrimagnetic resonance in the composite with ferrite, with a decrease in the average particle size of BaSc0.2Fe11.8O19 hexaferrite powders to 50–150 nm. The dependences of the real and imaginary parts of the magnetic permeability and dielectric constant are given in the frequency range from 107 to 109 Hz. There was no domain wall resonance in the frequency dependence of magnetic losses for a ferrite-based composite mechanically activated for 60 min. SrTi0.2Co0.2Fe11.6O19 ferrite was milled in a bead mill to particles with an average size of 150–300 nm, and then to drying, pressing, sintering at 1360 °С and subsequent grinding to a size of 200–500 μm to obtain similar composites in a bond with a polymer. It was found that the properties of compositions change significantly with a change in the magnetic component synthesis technology: no resonant pattern of EMR absorption was observed. The Curie temperature was measured using the Faraday method. It was shown that it is ~340 °С for the studied material. Therefore, the effect of precursor milling on changes in magnetocrystalline anisotropy was identified.
About the Authors
G. P. BenderskiyRussian Federation
Dr. Sci. (Eng.), Head of the Department of innovation management
121552, Russia, Moscow, Orshanskaya str., 3
Yu. M. Molostova
Russian Federation
Senior lecturer, Department of innovation management
Moscow
P. A. Rumyantsev
Russian Federation
Cand. Sci. (Eng.), Researcher, Department of physics and technology of electrotechnical materials and components (PTEMC)
111250, Moscow, Krasnokazarmennaya str., 14
S. V. Serebryannikov
Russian Federation
Dr. Sci. (Eng), Professor, Department of PTEMC
Moscow
S. S. Serebryannikov
Russian Federation
Cand. Sci. (Eng.), Docent, Department of PTEMC
Moscow
References
1. Belous A.I., Mardanov M.K., Shvedov S.V. Microwave-electronics in radar connection systems. Technological encyclopedia. Book 1. Moscow: Tekhnosfera, 2021 (In Russ.).
2. El Gharbi M.M., Fernández-García R., Ahyoud S., Gil I. A review of flexible wearable antenna sensors: Design, fabrication methods, and applications. Materials. 2020. Vol. 13. No. 17. P. 3781—3799.
3. Latypova A.F., Kalinin Y.E. Analise of promising radioabsorbing materials. Vestnik Voronezhskogo gosudarstvennogo tehnitcheskogo universiteta. 2012. Vol. 8. No. 6. P. 70—76 (In Russ.).
4. Acharya R., Kumar D., Mathur G. Study of electromagnetic radiation effects on human body and reduction techniques. In: Opt. Wirel. Technol. Singapore, Springer, 2018. P. 497—505.
5. Harris V.G. Modern microwave ferrites. IEEE Trans. Magn. 2011. Vol. 48. No. 3. P. 1075—1104.
6. Ibrahim N. A., Abd Rahman T., Elijah O. Recent trend in electromagnetic radiation and compliance assessments for 5G communication. Int. J. Electr. Comp. Eng. 2017. Vol. 7. No. 2. P. 912—918.
7. Von Sovskii S.V. (ed.). Ferromagnetic resonance: The phenomenon of resonant absorption of a high-frequency magnetic field in ferromagnetic substances. Elsevier, 2016.
8. Karpov V.N., Kitaitsev A.A., Mikhailovskiy L.K., Savtchenko N.I., Tcheparin V.P. Application of natural ferromagnetic resonance in dispersed hexaferrites to solve problems of electromagnetic compatibility. In: Trudy mezhdunarodnoi konferentsii po giromagnitnoi bestokovoi ehlektronike. Moscow: MPEI, 1995. P. 426—431 (In Russ.).
9. Yang C., Liu F., Ren T.L., Liu L.T., Chen G., Guan X.K., Yue Z.X. Ferrite-partially-filled on-chip RF inductor fabricated using low-temperature nano-powder-mixed-photoresist filling technique for standard CMOS. In: International Electron Devices Meeting. IEEE. 2007. P. 1038—1040.
10. Bae S., Hong Y.K., Lee J.J., Seong W.M., Kum J.S., Ahn W.K,, Park J.H. Miniaturized broadband ferrite T-DMB antenna for mobile-phone applications. IEEE Trans. Magn. 2010. Vol. 46. No. 6. P. 2361—2364.
11. Khanna V.K. Emerging trends in ultra-miniaturized CMOS (complementary metal-oxide-semiconductor) transistors, single-electron, and molecular-scale devices: A comparative analysis for high-performance computational nanoelectronics. J. Sci. Industr. Res. 2004. Vol. 63. No. 10. P. 795—806.
12. Petrovitch N.E., Zhuravlev V.A., Politov M.V. Magnetic properties of nanoscale hexaferrite powders. Vestnik Tomskogo gosudarstvennogo universiteta. 2003. No. 278. P. 70—72 (In Russ.).
13. Drmota A,. Koselj J., Drofenik M., Žnidaršič A. Electromagnetic wave absorption of polymeric nanocomposites based on ferrite with a spinel and hexagonal crystal structure. J. Magnetism and Magnetic Mater. 2012. Vol. 324. No. 6. P. 1225—1229.
14. Houbi A., Aldashevich Z.A., Atassi Y., Telmanovna Z.B., Saule M., Kubanych K. Microwave absorbing properties of ferrites and their composites. A review. J. Magnetism and Magnetic Mater. 2021. Vol. 529. P. 167839.
15. Morchenko A.T. To model the structure and conditions of electromagnetic radiation absorption in ferrite-dielectric composites using representations of the effective medium. Izv. RAS. Seriya Fizicheskaya. 2014. Vol. 78. No. 11. P. 1482—1490 (In Russ.).
16. Buznik V.M. (ed.). Ultrafine nanoscale powders: Creation, structure, production and application. Tomsk: NTL, 2009 (In Russ.).
17. McHenry M.E., Willard M.A., Laughlin D.E. Amorphous and nanocrystalline materials for applications as soft magnets. Progr. Mater. Sci. 1999. Vol. 44. No. 4. P. 291—433.
18. Ristanović Z., Kalezić—Glišović A., Mitrović N., Đukić S., Kosanović D., Maričić A. The influence of mechanochemical activation and thermal treatment on magnetic properties of the BaTiO3—FexOy powder mixture. Sci. Sintering. 2015. Vol. 47. No. 1. P. 3—14. DOI:10.2298/SOS141121001R.
19. Petrovský E., Alcala M.D., Criado J.M., Grygar T., Kapička A., Šubrt J. Magnetic properties of magnetite prepared by ball-milling of hematite with iron. J. Magnetism and Magnetic Mater. 2010. No. 1-3. P. 257—273.
20. Aizikovitch B.V., Alekseev A.G., Kliodt M.F., Starostin A.P. Theoretical foundations of the creation of radio-absorbing coatings based on nanostructured materials. Trudy TcNII im. akad. A.N. Krylova. 2006. No. 30 (314). P. 136—145 (In Russ.).
21. Naiden E.P., Zhuravlyov R.A., Itin V.I., Terekhova O.G., Politov M.V., Lopushniak Y.M., Tcherbakov V.E. Magnetic properties of hexaferrite nanosized powders produced via mechanoactivation. Sci. Sintering. 2005. Vol. 37. No. 2. P. 107—114.
22. Petrovský E., Alcala M.D., Criado J.M., Gryga, T., Kapička A., Šubrt J. Magnetic properties of magnetite prepared by ball-milling of hematite with iron. J. Magnetism and Magnetic Mater. 2000. Vol. 210. No. 1-3. P. 257—273.
23. Hajalilou A., Mazlan S.A. A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties. Appl. Phys. A. 2016. Vol. 122. No. 7. P. 1—15.
Review
For citations:
Benderskiy G.P., Molostova Yu.M., Rumyantsev P.A., Serebryannikov S.V., Serebryannikov S.S. Radar-absorbing composite materials based on ferrite powders. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(2):13-21. (In Russ.) https://doi.org/10.17073/1997-308X-2022-2-13-21