Activation energy of phase transformations at high-temperature synthesis of tungsten carbide by electrothermal explosion under pressure
https://doi.org/10.17073/1997-308X-2022-2-52-60
Abstract
The effect of activation energy on phase transformations (transitions) in the W–C system during the synthesis induced by an external heat source was investigated by electrothermal explosion (ETE) under pressure. The ETE technology combines self-propagating high-temperature synthesis (SHS) with additional sample heating by Joule heat – electric current passing through the synthesized mixture, and it makes it possible to determine the chemical reaction rate that is highly susceptible to external impacts such as pressure, concentration, sample shape, any film present on combustion products, etc. The chemical reaction rate, i.e. external source current, may be controlled by changing the activation energy. The study was conducted in the following conditions: temperature Т = 293÷3700 K; carbon concentration of 49.8–50.2 at.%; quasi-static compression at P = 96 MPa; external source voltage and current density V = 10 V, I = 20 МА/m2, respectively; samples 8 mm in diameter weighing 6 g. The Т–τ thermogram of the W–C system was used to determine the following parameters: four stages of the synthesis process, temperatures of special points of phase transformations, temperature boundaries of phases and process activation energy. Thermograms of intermediate states are presented as isothermal plateaus of phase transformations. The analysis of experimental results and the physical representation of the process make it possible to assert that temperature plateau parameters are the effective value of activation energy for synthesis mode maintenance. Each of the 4 W–C mixture synthesis stages is described. Pre-explosion stage I – sample heating in the temperature range of Т = 293÷563К, endothermic reaction, effective activation energy for synthesis mode maintenance Q = 2.96 kJ, and taking into account 1-mole mass Еа = 111.6 kJ/mol. Low-temperature (563–1190 К) stage II – ignition, Q = 5.46 kJ, Еа = 109.2 kJ/mol. High-temperature stage (III) in the range of Т = 1190÷2695К, order–disorder transformation, Q = 14.25 kJ, Еа = 424 kJ/mol. Finally, Stage IV occurs in the range of Т = 2695÷3695К, Q = 14.31 kJ, Еа = 143.2 kJ/mol. It was shown that the limiting stage with the highest activation energy is the melting process.
About the Authors
V. T. TelepaRussian Federation
Dr. Sci. (Phys.-Math.), Leading researcher of the Laboratory of energy stimulation of physical and chemical process
142432, Moscow reg., Chernogolovka, Academician Osipyan str., 8
M. I. Alymov
Russian Federation
Dr. Sci. (Eng.), Prof., Corresponding Member of the RAS, Director of ISMAN
Chernogolovka
А. V. Shcherbakov
Russian Federation
Researcher of the Laboratory of energy stimulation of physical and chemical process
Chernogolovka
References
1. Merzhanov A.G. Combustion processes and synthesis of materials. Chernogolovka: ISMAN, 1998 (In Russ.).
2. Kurlov A.S., Gusev A.I. Physics and chemical of tungsten curbide. Moscow: Fizmatlit, 2013 (In Russ.).
3. Zelikman A.N., Nikitina L.S. Volfram (tungsten). Moscow: Metallurgiya, 1978 (In Russ.).
4. Rempel A.A., Wbrschum R., Schaefer H.-E. Atomic defects in hexagonal tungsten carbide studied by positron annihilation. Phys. Rev. B. 2000. Vol. 61. No. 9. P. 5945—5948. DOI: 10.1103/PhysRevB.61.5945.
5. Telepa V.T., Alymov M.I., Shcherbakov V.A., Shcherbakov A.V., Kovalev I.D. Observation of transition in the W—C system during electrothermal explosion under pressure. Jnt. J. SHS. 2019. Vol. 28. No. 3. P. 204—206. DOI: 10.3103/S1061386219030166.
6. Wert C.A., Thomson R.M. Physics of solids. N.Y., Toronto. 1964.
7. Levashov E.A., Rogachev A.S., Yukhvid V.I., Borovinskaya I.P. Physico-chemical and technological bases of self-propagating high-temperature synthesis. Moscow: BINOM, 1999.
8. Telepa V.T., Alymov M.I., Shcherbakov V.A., Shcherbakov A.V., Vershinnikov V.I. Sinthesis of the WC—W2C composit by electro-thermal explosion under. Pis’ma o materialakh. 2018. Vol. 8. No. 2. P. 119—122 (In Russ.).
9. Kurlov A.S., Gusev A.I. Phase eguilibria in the W—C system and tungsten carbides. Uspekhi khimii. 2006. Vol. 75. No. 7. P. 687—708 (In Russ.).
10. Baikalova Yu.V., Lomousky O.I. Solid state synthesis of tungsten carbide in an inert copper matrix. J. Alloys Compd. 2000. Vol. 297. No. 1. P. 87—91. DOI: 10.1016/S0925-8388(99)00579-4.
11. Berger S., Porat R. Nanocrystalline materials: A study of WC-based hard metals. Progr. Mater. Sci. 1997. Vol. 42. No. 1-4. P. 311—320.
12. Wu X.Y., Zhang W., Wang W., Yang F., Min J.Y., Wang B.Q., Guo J.D. Ultrafine WC–10Co cemented carbides fabricated by electric-discharge compaction. J. Mater. Research. 2004. Vol. 19. No. 8. P. 2240—2244. DOI: 10.1557/JMR.2004.0324.
13. Orru R., Licheri R., Locci A.M., Cincotti A., Cao G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. End. 2009. Vol. 127-287. P. 158—166.
14. Shcherbakov V.A., Telepa V.T., Shcherbakov A.V. Fuset TiC dy elektrothermal explosion under pressure. Jnt. J. SHS. 2015. Vol. 24. No. 4. P. 251—252. DOI: 10.3103/S1061386215040111.
15. Korchagin M.A. Bulina N.V. Superadiabatic mode of thermal explosion with a mechanically activated mixture of tungsten and soot. Fizika goreniya i vzryva. 2016. Vol. 52. No. 2. P. 112—119 (In Russ.).
16. Belousov V.Yа., Pilipchenko A.V., Lutsak L.A. Some regularities of sh-synthesis initiation during direct electric heating. Poroshkovaya metallurgiya. 1988. No. 10. P. 65—68 (In Russ.).
17. Kurlov A.S., Gusev A.I. Particle sizes of nanocrystalline powders as a function of mechanical grinding parameters. Pis’ma ZHTF. 2007. Vol. 33. No. 19. P. 46—54 (In Russ.).
18. Knyazik V.A., Shteinberg A.S. Regularities of thermal explosion in a system with an additional (non-chemical) heat source. Doklady Akademii Nauk. 1993. Vol. 328. No. 5. P. 580—584 (In Russ.)
19. Grigor’ev O.I., Kushkhov Kh.E, Shatokhin A.A., Khomenko G.E., Tishchenko A.A. Properties of highly dispersed tungsten carbide powders obtained by high-temperature electrochemical synthesis. Poroshkovaya metallurgiya. 1991. No. 8. P. 1—3 (In Russ.).
20. Telepa V.T., Shcherbakov V.A., Shcherbakov A.V. TiC—30 wt. Fe composit by pressure-assisted electrothermal explosion. Pis’ma o materialach. 2016. Vol. 6. No. 4. P. 286—289 (In Russ.).
21. Sadangi R.K., Voronov O.A., Kear B.H. WC—Codiamond nanocomposites. Nanostruct. Mater. 1999. Vol. 12. No. 5-8. P. 1031—1034. DOI: 10.1016/S0965-9773(99)00293-7.
22. Jain M., Sadangi R.K., Cannon W.R., Kear B.H. Processing of functional grabed WC/Co/diamond nanocomposites. Scripta Mater. 2001. Vol. 44. No. 8-9. P. 2099—2103. DOI: 10.1016/S1359-6462(01)00882-X.
23. Lünnberg B., Lundstrüm T., Tellgren R. A neutron powder diffraction study of Ta2C and W2C. J. Less-Common Metals. 1986. Vol. 120. No. 2. P. 239—245. DOI: 10.1016/0022-5088(86)90648-X.
24. Epicier T., Dubois J., Esnouf C., Fantozzi G., Convert P. Neutron powder diffraction studies of transition metal hemicarbides M2C1–x. II. In situ hign temperature study of W2C1–x and Mo2C1–x. Acta Metallurg. 1988. Vol. 36. No. 8. P. 1903—1921. DOI: 10.1016/0001-6160(88)90293-3.
25. Kurlov A.S., Gusev A.I. Pecualirities of vacuum annealing of nanocrystalline WC powders. Int. J. Refr. Met. Hard Mater. 2012. Vol. 32. No. 5. P. 51—60. DOI: 10.1016/j.ijrmhm.2012.01.009.
26. Kurlov A.S., Gusev A.I. Neutron and x-ray diffraction study and symmetry analysis of phase transformations in lower tungsten carbide W2C. Phys. Rev. B. 2007. Vol. 76. No. 17. Art. 174115. DOI: 10.1103/PhysRevB.76.174115.
27. Rudy E., Windisch S. Evidence to zeta Fe2N-type sublattice order in W2C at intermediate temperatures. J. Amer. Ceram. Soc. 1967. Vol. 50. No. 5. P. 272—273. DOI: 10.1111/j.1151-2916.1967.tb15105.x.
Review
For citations:
Telepa V.T., Alymov M.I., Shcherbakov А.V. Activation energy of phase transformations at high-temperature synthesis of tungsten carbide by electrothermal explosion under pressure. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(2):52-60. (In Russ.) https://doi.org/10.17073/1997-308X-2022-2-52-60