Using explosion loading to obtain coatings of chromium carbide and titanium mixtures in deposition mode
https://doi.org/10.17073/1997-308X-2022-2-70-78
Abstract
The paper presents the results of studies into the microstructure, chemical and phase composition of coatings deposited on a steel substrate using the sliding explosive loading of Cr3C2 chromium carbide and titanium powder mixtures. The equilibrium phase composition of coatings was calculated by computational thermodynamic modeling using the Thermo-Calc software package. The structure and elemental composition were studied using a FEI Versa 3D scanning electron microscope with an integrated EDAX Apollo X system for energy dispersive X-ray microprobe analysis. A Bruker D8 Advance diffractometer was used for X-ray phase analysis. It was shown that when the powder layer is loaded by a sliding detonation wave, it can be shifted along the substrate surface due to the horizontal mass velocity component of compacted material particles. This shift causes the inner layer of the compacted powder and the surface layer of the substrate to melt as a result of friction. The presence of a liquid phase prevents the compacted powder layer deceleration so that the major part of it is removed from the substrate surface. The liquid phase remaining on the surface undergoes rapid quenching due to heat removal into the substrate and forms a deposited coating containing both the components of the initial powder mixture and the components of the substrate to be coated. It was established that the deposited layer structure features by extremely high dispersion (grain size does not exceed 250 nm), and its phase composition turns out to be close to a thermodynamically equilibrium one. When using powder mixtures of chromium carbide with 40% titanium, a coating is formed consisting of titanium carbide with a metal binder based on solid solutions of iron and titanium in chromium.
About the Authors
A. V. KrokhalevRussian Federation
Dr. Sci. (Eng.). Dean of the Faculty of technology of structural materials
400005, Volgograd, Lenina ave., 28
V. O. Kharlamov
Russian Federation
Cand. Sci. (Eng.), Engineer of the Center for collective use «Physico-chemical methods research»
Volgograd
D. R. Chernikov
Russian Federation
Postgraduate student, Department «Equipment and technology of welding production» (ETWP)
Volgograd
S. V. Kuz’min
Russian Federation
Dr. Sci. (Eng.), Professor of the Department of ETWP, Vice-rector of VSTU
Volgograd
V. I. Lysak
Russian Federation
Dr. Sci. (Eng.), Prof., Acad. of RAS, Head of the Department of ETWP, Scientific adviser
Volgograd
References
1. Kear B.H., Skandan G., Sadangi R.K. Factors controlling decarburization in HVOF sprayed nano-WC/Co hard coatings. Scripta Mater. 2001. Vol. 44. No. 8-9. P. 1703—1707.
2. Kalita V.I., Radyuk A.A., Komlev D.I., Ivannikov A.Yu., Blagoveshchenskii Yu.V., Grigorovich K.V., Shibaeva T.V., Umnova N.V., Molokanov V.V., Umnov P.P., Mel’nik Yu.I. Mechanically Alloy Powder Plasma WC—Co Coatings. Fizika i khimiya obrabotki materialov. 2014. No. 5. P. 22—29 (In Russ.).
3. Mrdak M.R. Mechanical properties and microstructure of vacuum plasma sprayed Cr3C2-25 (Ni20Cr) coatings. Vojnotehnički glasnik. 2015. Vol. 63.No. 2. P. 47—63.
4. Bogatov Y.V., Shcherbakov V.A. TiC—20% Cr(Ni) Composites by forced SHS compaction: Influence of mechanical activation mode. Int. J. SHS. 2021. No. 30(1). Р. 58—59.
5. Kalita V.I., Radyuk A.A., Komlev D.I., Ivannikov A.Yu., Mikhailova A.B., Alpatov A.V. Cermet plasma coating TiC—Cr3C2—NiCr—MoC. J. Phys. Conf. Ser. 2018. No. 1121(1). Art. 012015.
6. Yang X., Pang H., Zhang H., Wang Q., Zhao C., Li Z., Zheng H. Mirostructure and oxidization of mo alloys by spark plasma sintering. Mater. Sci. Forum. 2018. 936 MSF. P. 164—170.
7. Krokhalev A.V, Kharlamov V.O., Kuz’min S.V., Lysak V.I. Foundations of the fabrication technology of wearresistant coatings made of mixtures of chromium carbide powders with a metallic binder by explosive pressing. Russ. J. Non-Ferr. Met. 2018. Vol. 59. Iss. 4. P. 419—432.
8. Prummer R. Explosive compaction of powders and composites. Boca Raton: CRC Press, 2006.
9. Krokhalev A.V., Kharlamov V.O., Kuz’min S.V., Lysak V.I, Pai V.V. Explosive compaction of chromium carbide powders with a metallic binder. Combustion, Explosion and Shock Waves. 2019. Vol. 55. No. 4. P. 491—499.
10. Lee S.H., Hokamoto K. WC/Co coating on a mild steel substrate through underwater shock compaction using a self combustible material layer (WC/Co coating through underwater shock compaction). Mater. Trans. 2007. Vol. 48. No. 1. P. 80—83.
11. Yakovlev I.V., Ogolikhin V.M., Shemelin S.D. Explosive manufacturing of ceramic-metal protective containers. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2012. Vol. 14. P. 55—60 (In Russ.).
12. Buzyurkin A.E., Kraus E.I., Lukyanov Y.L. Explosive compaction of WC + Co mixture by axisymmetric scheme. J. Phys. Conf. Ser. 2015. Vol. 653. No. 1. Art. 012036.
13. Krokhalev A.V., Kharlamov V.O., Tupitsin M.A., Kuz’min S.V., Lysak V.I. Revisiting the possibility of formation of hard alloys from powder mixtures of carbides with metals by explosive compacting without sintering. Russ. J. Non-Ferr. Met. 2018. Vol. 59. No. 5. P. 550—556.
14. Ageev E.V., Latypov R.A., Ageeva E.V. Investigation into the properties of electroerosion powders and hard alloy fabricated from them by isostatic pressing and sintering. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2014. No. 6. P. 51—55 (In Russ.).
15. Panov V.S., Zaitsev A.A. Development trends of technology of ultrafine and nanosized hard alloys WC—Co. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya. 2014. No. 3. P. 38—48 (In Russ.).
16. Pirso J., Viljus M. Structure formation of Cr3C2-based cermets during sintering. Proceedings of Powder Metallurgy World Congress. Kyoto, Japan. 2000. P. 1265—1268.
17. Duran C., Eroglu S. Liquid-phase sintering and properties of Cr3C2/NiCr cermets. J. Mater. Process. Technol. 1998. Vol. 74. No. 1-3. P. 69—73.
18. Rogozin V.D. Explosive treatment of powder materials. Volgograd: Politekhnik, 2002 (In Russ.).
19. Kaunov A.M., Shamrey A.V. On the mechanism of formation of metallization layers during high-speed throwing of powders on metallic substrates. Fizika i tekhnika vysokikh davlenii. 1982. No. 8. P. 38—41 (In Russ.).
20. Kaunov A.M. On the role of macroplastic flows in the formation of metallization layers during high-speed collision of a powder with a metallic substrate. Fizika i khimiya obrabotki materialov. 1984. No. 12. С. 28—34 (In Russ.).
21. Kaunov A.M., Burminskaya L.N., Bukin V.M., Ryadinskaya I.M. Formation of the structure of powder-metallurgy coatings obtained by the impact wave method. Soviet Powder Metallurgy and Metal Ceramics. 1986. Vol. 25 (5). P. 402—405.
22. Kaunov A.M., Bukin V.M. Explosive application of coatings. Soviet Powder Metallurgy and Metal Ceramics. 1984. Vol.23 (1). P. 42—45.
23. Jing Wang, Wen-Zhi Li, Heng-De Li. Mechanical properties of TiC/metal multilayers synthesized by ion beam sputtering technique. J. Vacuum Sci. Technol. B: Microelectronics and Nanometer Structures Processing, Measurement and Phenomena. 2001. Vol. 9. Р. 250—254. DOI: 10.1116/1.1343098.
24. Shi K., Hu S., Liang L. Effect of tempering treatment on microstructure and fatigue life of TiC—Cr overlay, produced by plasma transferred arc alloying. J. Mater Sci. 2012. Vol. 47. P. 720—729. DOI: 10.1007/s10853-011-5845-5.
25. Kharlamov V.O., Krokhalev A.V., Tupitsin M.A., Kuz’min S.V., Lysak V.I. Methodology for estimating the physical conditions of observation in explosive compression of powder material on a steel base. Izvestija VolgGTU. Ser. Problemy materialovedenija, svarki i prochnosti v mashinostroenii. 2015. No. 5. C. 57—61 (In Russ.).
26. Eremin E.N., Losev A.S., Borodikhin S.A., Ponomarev I.A., Matalasova A.E. The Influence of aging on the structure and properties of metal 30N8Kh6M3STYu obtained by surfacing. In: Problems of machine science: Proc. of the III Inter. Sci. Tech. Conf. (Omsk, Russia, April 23—24, 2019). P. 29—35. eLIBRARY. ID: 37541796.
27. Fukunaga T., Ishikawa E., Mizutani U. Structural observations during amorphization process of the (Cr0.7Fe0.3)– N system by MA. Mater. Sci. J. Japan Soc. of Powder and Powder Metallurgy. Publ. 25 Sept. 1991. DOI: 10.2497/JJSPM.38.940.
28. Lysak V.I., Kuz’min S.V. Explosion welding. Moscow: Mashinostroenie-1, 2005. (In Russ.).
29. Gur’ev D.L., Gordopolov Y.A., Zaripov N.G., Kabirov R.R. Shock synthesis and microstructure of Ti—Al alloy. Combustion, Explosion, and Shock Waves. 2009. Vol. 45(1). P. 104—110.
Review
For citations:
Krokhalev A.V., Kharlamov V.O., Chernikov D.R., Kuz’min S.V., Lysak V.I. Using explosion loading to obtain coatings of chromium carbide and titanium mixtures in deposition mode. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(2):70-78. (In Russ.) https://doi.org/10.17073/1997-308X-2022-2-70-78