Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Oxidation kinetics and mechanism of nickel alloys

https://doi.org/10.17073/1997-308X-2022-3-4-23

Abstract

The study covers the effect of alloying elements on the kinetics and mechanism of oxidation at 1150 °С for 30 hours of heat-resistant nickel alloys obtained using such technologies as centrifugal SHS metallurgy (SHS(M)), vacuum induction melting (VIM), elemental synthesis (ES), hot isostatic pressing (HIP). A comparative analysis was carried out for alloys based on nickel monoaluminide and standard AZhK and EP741NP alloys. It was found that kinetic dependences are described mainly by parabolic approximation. The logarithmic law of oxidation with the rapid (within 3–4 hours) formation of the primary protective layer is typical for alloys doped with molybdenum and hafnium. In the case of AZhK and EP741NP, oxidation proceeds according to a parabolic law at the initial stage (2–3 hours), and then according to a linear mechanism with the voloxidation and complete destruction of samples. Oxygen and nitrogen diffusion proceeds predominantly along the nickel aluminide grain boundaries and it is limited by the Al2O3 + Cr2O3 + XnOm protective film formation. SHS(M) alloys feature by a positive effect of zirconium and tantalum added as dopants on heat resistance. The Ta2O5 phase is formed in the intergranular space, which reduces the rate and depth of oxidation. The zirconium-containing top layer Al2O3 + Zr5Al3O0.5 blocks the external diffusion of oxygen and nitrogen, thereby improving heat resistance. Doping with hafnium also has a positive effect on oxidation resistance and leads to the formation of submicron and nanosized HfO2 inclusions that suppress the grain boundary diffusion of oxygen. MoO3, Mo3O4, CoMoO4 volatile oxides are formed in alloys with a high content of molybdenum and compromise the protective layer integrity. A comparative analysis of the oxidation kinetics and mechanism for samples consisting of the base β-alloy with Cr + Co + Hf additives showed a significant effect on the heat resistance of the sample preparation method. As the proportion of impurity nitrogen decreases and the Cr2O3 sublayer is formed, the oxidation mechanism also changes.

About the Authors

M. I. Aheiev
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Junior research scientist

119049, Russia, Moscow, Leninskiy pr., 4



V. V. Sanin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), Junior research scientist

Moscow



N. V. Shvindina
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Scientific project engineer 1st category

Moscow



Yu. Yu. Kaplanskii
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), Research scientist

Moscow



E. A. Levashov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Eng.), Prof., Acad. of Russian Academy of Natural Science, Head of Scientific-Educational Center of SHS, MISIS–ISMAN; Head of the Department of powder metallurgy and functional coat

Moscow



References

1. Logunov A.V. Heat-resistant nickel alloys for blades and disks of gas turbines. Moscow: «Gazoturbinnye tekhnologii », 2017 (In Russ.).

2. Hu L., Zhang G., Hu W., Gottstein G., Bogner S., BührigPolaczek A. Tensile creep of directionally solidified NiAl—9Mo in situ composites. Acta Mater. 2013. Vol. 61. P. 7155—7165. DOI:10.1016/j.actamat.2013.08.017.

3. Seemüller C., Heilmaier M., Haenschke T., Bei H., Dlouhy A., George E.P. Influence of fiber alignment on creep in directionally solidified NiAl—10Mo in-situ composites. Intermetallics. 2013. Vol. 35. P. 110—115. DOI:10.1016/j.intermet.2012.12.007.

4. Bei H., George E.P. Microstructures and mechanical properties of a directionally solidified NiAl—Mo eutectic alloy. Acta Mater. 2005. Vol. 53. P. 69—77. DOI:10.1016/j.actamat.2004.09.003

5. Shang Z., Shen J., Wang L., Du Y., Xiong Y., Fu H. Investigations on the microstructure and room temperature fracture toughness of directionally solidified NiAl—Cr(Mo) eutectic alloy. Intermetallics. 2015. Vol. 57. P. 25—33. DOI:10.1016/j.intermet.2014.09.012.

6. Walter J.L., Cline H.E. The effect of solidification rate on structure and high-temperature strength of the eutectic NiAl—Cr. Metal. Mater. Trans. B. 1970. Vol. 1. P. 1221— 1229. DOI:10.1007/bf02900234.

7. Cui C.Y., Chen Y.X., Guo J.T., Li D.X., Ye H.Q. Preliminary investigation of directionally solidified NiAl—28Cr— 5.5Mo—0.5Hf composite. Mater. Lett. 2000. Vol. 43. P. 303—308. DOI:10.1016/S0167-577X(99)00278-5.

8. Voitovich R.F., Golovko E.I. High temperature oxidation of metals and alloys. Kiev: Naukova dumka, 1980.

9. Klumpes R., Maree C.H.M., Schramm E., de Wit J.H.W. The influence of chromiumon the oxidation of β-NiAl at 1000 °C. Mater. Corros. 1996. Vol. 47. P. 619—624.

10. Johnson D.R., Chen X.F., Oliver B.F. Processing and mechanical properties of in-situ composites from the NiAlCr and the NiAl(Cr,Mo) eutectic systems. Intermetallics. 1995. Vol. 3. P. 99—113. DOI:10.1016/09669795(95)92674-O.

11. Yang J.C., Schumann E., Levin I., Rühle M. Transient oxidation of NiAl. Acta Mater. 1998. Vol. 46. P. 2195—2201.

12. Grabke H. Oxidation of NiAl and FeAl. Intermetallics. 1999. Vol. 7. No. 10. P. 1153—1158. DOI:10.1016/S09669795(99)00037-0.

13. Gao W., Li Z., Wu Z., Li S., He Y. Oxidation behavior of Ni3Al and FeAl intermetallics under low oxygen partial pressures. Intermetallics. 2002. Vol. 10. No. 3. P. 263—270. DOI:10.1016/S0966-9795(01)00132-7.

14. Bo L., Fei L., Cong L., Yimin G., Congmin F., Xiaohu H. Effect of Cr element on the microstructure and oxidation resistance of novel NiAl-based high temperature lubricating composites. Corrosion Sci. 2021. Vol. 188. Art. 109554. DOI:10.1016/j.corsci.2021.109554.

15. Geramifard G., Gombola C., Franke P., Seifert H.J. Oxidation behaviour of NiAl intermetallics with embedded Cr and Mo. Corrosion Sci. 2020. Vol. 177. Art. 108956. DOI:10.1016/j.corsci.2020.108956.

16. Hea Y., Luo L., Sushko M., Liu C, Baer D., Schreiber D., Rosso K., Wang Ch. Vacancy ordering during selective oxidation of β-NiAl. Materialia. 2020. Vol. 12. Art. 100783. DOI:10.1016/j.mtla.2020.100783.

17. Sanin V.V., Filonov M.R., Yukhvid V.I., Anikin Y.A., Mikhailov A.M. Investigation into the influence of the remelting temperature on the structural heredity of alloys fabricated by centrifugal SHS metallurgy. Russ. J. NonFerr. Met. 2016. Vol. 57. No. 2. P. 124—130. DOI:10.3103/S1067821216020097.

18. Zaitsev A.A., Sentyurina Zh.A., Levashov E.A., Pogozhev Yu.S., Sanin V.N., Loginov P.A., Petrzhik M.I. Structure and properties of NiAl—Cr(Co,Hf) alloys prepared by centrifugal SHS casting. Part 1 — Room temperature investigations. Mater. Sci. Eng. A. 2017. Vol. 690 P. 463—472. DOI:10.1016/j.msea.2016.09.075.

19. Zaitsev A.A., Sentyurina Zh.A., Levashov E.A., Pogozhev Yu.S., Sanin V.N., Sidorenko D.A. Structure and properties of NiAl—Cr(Co,Hf) alloys prepared by centrifugal SHS casting followed by vacuum induction remelting. Part 2 — Evolution of the structure and mechanical behavior at high temperature. Mater. Sci. Eng. A. 2017. Vol. 690. P. 473—481. DOI:10.1016/j.msea.2017.02.089.

20. Kaplanskii Yu.Yu., Zaitsev A.A., Levashov E.A., Pogozhev Yu.S., Loginov P.A., Sentyurina Zh.A., Logacheva A.I. The structure and properties of pre-alloyed NiAl— Cr(Co,Hf) spherical powders produced by plasma rotating electrode processing for additive manufacturing. J. Mater. Res. Technol. 2018. Vol. 7. No. 4. P. 461—468. DOI:10.1016/j.jmrt.2018.01.003.

21. Kaplanskii Yu.Yu., Zaitsev A.A., Levashov E.A., Loginov P.A., Sentyurina Zh.A. NiAl based alloy produced by HIP and SLM of pre-alloyed spherical powders. Evolution of the structure and mechanical behavior at high temperatures. Mater. Sci. Eng. A. 2018. Vol. 717. P. 48—59. DOI:10.1016/j.msea.2018.01.057.

22. Kurbatkina V.V. Nickel aluminides. In: Concise Encycl. Self-Propagating High-Temperature Synth. Elsevier, 2017. P. 212—213. DOI:10.1016/B978-0-12-8041734.00099-5.

23. Kurbatkina V.V., Patsera E.I., Levashov E.A., Kaplanskii Y.Y., Samokhin A.V. Fabrication of narrow-fraction micropowders of nial-based refractory alloy compoNiAl— M5-3. Int. J. SHS. 2018. Vol. 27. P. 236—244. DOI:10.3103/S1061386218040027.

24. Tsvetkov Yu.V., Samokhin A.V., Alekseev N.V., Fadeev A.A., Sinaiskii M.A., Levashov E.A., Kaplanskii Yu.Yu. Plasma spheroidization of micropowders of a heat-resistant alloy based on nickel monoaluminide. Doklady Chemistry. 2018. Vol. 483. Pt. 2. P. 312—317. DOI:10.1134/S0012500818120030.

25. Kaplansky Yu.Yu., Levashov E.A., Korotitskiy A.V., Loginov P.A., Sentyurina Zh.A., Mazalov A.B. Influence of aging and HIP treatment on the structure and properties of NiAl-based turbine blades manufactured by laser powder bed fusion. Additive Manufacturing. 2020. Vol. 31. Art. 100999. DOI:10.1016/j.addma.2019.100999.

26. Sanin V.V., Kaplansky Y.Y., Aheiev M.I., Levashov E.A., Petrzhik M.I., Bychkova M.Y., Samokhin A.V., Fadeev A.A., Sanin V.N. Structure and properties of heat-resistant alloys NiAl—Cr—Co—X (X = La, Mo, Zr, Ta, Re) and fabrication of powders for additive manufacturing. Materials. 2021. Vol. 14. No. 12. Art. 3144. DOI:10.3390/ma14123144.

27. Kaplanskii Y.Y., Levashov E.A., Bashkirov E.A., Korotitskiy A.V. Effect of molybdenum on structural evolution and thermomechanical behavior of a heat-resistant nickel aluminide-based alloy. J. Alloys Compd. 2022, Vol. 892. Art. 162247. DOI:10.1016/j.jallcom.2021.162247.

28. Baskov F.A., Sentyurina Zh.A., Kaplanskii Yu.Yu., Logachev I.A., Semerich A.S., Levashov E.A. The influence of post heat treatments on the evolution of microstructure and mechanical properties of EP741NP nickel alloy produced by laser powder bed fusion. Mater. Sci. Eng. A. 2021. Vol. 817. Art. 141340. DOI:10.1016/j.msea.2021.141340.

29. Zhang W.L., Li S.M., Fu L.B., Li W., Sun J., Wang T.G., Jiang S.M., Gong J., Sun C. Preparation and cyclic oxidation resistance of Hf-doped NiAl coating. Corrosion Sci. 2022. Vol. 195. Art. 110014. DOI:10.1016/j.corsci.2021.110014.


Review

For citations:


Aheiev M.I., Sanin V.V., Shvindina N.V., Kaplanskii Yu.Yu., Levashov E.A. Oxidation kinetics and mechanism of nickel alloys. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(3):4-23. https://doi.org/10.17073/1997-308X-2022-3-4-23

Views: 646


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)