Fabrication and oxidation resistance of the non-stoichiometric tantalum-hafnium carbonitride
https://doi.org/10.17073/1997-308X-2022-3-45-54
Abstract
This research was conducted to obtain non-stoichiometric tantalum-hafnium carbonitride powder of the Fm3m (225) structural type using a combination of mechanical activation (MA) and self-propagating high-temperature synthesis (SHS) methods. Mechanical activation for 60 min in a low-energy mode (347 rpm) forms Ta/Hf/C composite particles 1 to 20 μm in size with a layered structure and contributes to a uniform distribution of elements. SHS of a mechanically activated Ta + Hf + C mixture in a nitrogen atmosphere (0.8 MPa) leads to the formation of a single-phase tantalum-hafnium carbonitride powder with the Ta0.25Hf0.75C0.5N0.3 composition where particles feature by a ≪spongy≫ morphology with pores and caverns and consist of submicron grains. Spark plasma sintering (SPS) was used to obtain a bulk sample of tantalum-hafnium carbonitride with a grain size of 3 to 5 μm, relative density of 98.2 Ѓ} 0.3 %, hardness of 19.8 Ѓ} 0.2 GPa, and crack resistance of 5.4 Ѓ} 0.4 MPa・m1/2. The kinetics of (Ta,Hf)CN oxidation at 1200 °C in air is described by a parabolic law suggesting the formation of an Hf6Ta2O17 + mHfO2 oxide layer with a low oxygen diffusion rate where the oxidation rate is 0.006 mg/(cm2・s). A (Ta,Hf)CN oxidation mechanism is proposed, which states that Ta2O5 and HfO2 are formed on the surface of grains at the first stage that react with each other at the second stage to form a Hf6Ta2O17 homologous superstructure and monoclinic HfO2. CO, CO2, NO and NO2 gaseous oxidation products are released with the formation of pores and cracks.
Keywords
About the Authors
V. S. SuvorovaRussian Federation
Postgraduate student, Department of powder metallurgy and functional coatings, Engineer of the scientific project of the Science and Research Center (SRC) «Functional nanoceramic»
119049, Russia, Moscow, Leninskiy pr., 4
A. A. Nepapushev
Russian Federation
Cand. Sci. (Eng.), Senior researcher, SRC «Functional nanoceramic»
Moscow
D. O. Moskovskikh
Russian Federation
Cand. Sci. (Eng.), Director of SRC «Functional nanoceramic»
Moscow
K. V. Kuskov
Russian Federation
Research scientis, SRC «Functional nanoceramic»
Moscow
References
1. Fahrenholtz W.G., Wuchinа E.J., Lee W.E., Zhou Y. Ultra- high temperature ceramics: materials for extreme environment applications. N.Y.: John Wiley & Sons, 2014.
2. Vorotilo S., Sidnov K., Kurbatkina V.V., Loginov P.A., Patsera E.I. Sviridova T.A., Lobova T.A., Levashov E.A., Klechkovskayaet V.V. Super-hardening and localized plastic deformation behaviors in ZrB2—TaВ2 ceramics. J. Alloys Compd. 2022. Vol. 901. P. 163368. DOI:10.1016/j.jallcom.2021.163368.
3. Ushakov S.V., Navrotsky A., Hong Q. J., van de Walle A. Carbides and nitrides of zirconium and hafnium. Materials. 2019. Vol. 12. Iss. 17. P. 2728. DOI:10.3390/ma12172728.
4. Sheindlin M., Falyakhov T., Petukhov S., Valyano G., Vasin A. Recent advances in the study of high-temperature behaviour of non-stoichiometric TaCx, HfCx and ZrCx carbides in the domain of their congruent melting point. Adv. Appl. Ceram. 2018. Vol. 117. Iss. 1. P. s48—s55. DOI:10.1080/17436753.2018.1510819.
5. Aritonang S., Ezha Kurniasari W. S., Juhana R., Herawan T. Analyzing tantalum carbide (TaC) and hafnium carbide (HfC) for spacecraft material. In: Recent trends in manufacturing and materials towards industry 4.0. Singapore, Springer, 2021. P. 925—933. DOI:10.1007/978-981-15-9505-9_81.
6. Shimada S. Interfacial reaction on oxidation of carbides with formation of carbon. Solid State Ionics. 2001. Vol. 141. P. 99—104. DOI:10.1016/S0167-2738(01)00727-5.
7. Sevastyanov V.G., Simonenko E.P., Gordeev A.N., Simonenko N.P., Kolesnikov A.F., Papynov E.K., Shichalin O.O., Avramenko V.A., Kuznetsov N.T. Behavior of a sample of the ceramic material HfB2—SiC (45 vol.%) in the flow of dissociated air and the analysis of the emission spectrum of the boundary layer above its surface. Russ. J. Inorg. Chem. 2015. Vol. 60. Iss. 11. P. 1360—1373. DOI:10.1134/S0036023615110133.
8. Potanin A.Yu., Astapova A.N., Pogozhev Yu.S., Rupasov S.I., Shvyndina N.V., Klechkovskaya V.V., Levashov E.A., Timofeev I.A., Timofeev A.N. Oxidation of HfB2—SiC ceramics under static and dynamic conditions. J. Eur. Ceram. Soc. 2021. Vol. 41. Iss. 16. P. 34—47. DOI:10.1016/j.jeurceramsoc.2021.09.018.
9. Zhang C., Boesl B., Agarwal A. Oxidation resistance of tantalum carbide-hafnium carbide solid solutions under the extreme conditions of a plasma jet. Ceram. Int. 2017. Vol. 43. Iss. 17. P. 14798—14806. DOI:10.1016/j.ceramint.2017.07.227.
10. Savvatimskiy A.I., Onufriev S.V., Muboyadzhyan S.A. Thermophysical properties of the most refractory carbide Ta0.8Hf0.2C under high temperatures (2000—5000 K). J. Eur. Ceram. Soc. 2019. Vol. 39. Iss. 4. P. 907—914. DOI:10.1016/j.jeurceramsoc.2018.11.030.
11. Kurbatkina V.V., Patsera E.I., Levashov E.A., Vorotilo S. SHS processing and consolidation of Ta—Ti—C, Ta— Zr—C, and Ta—Hf—C carbides for ultra—high—temperatures application. Adv. Eng. Mater. 2018. Vol. 20. Iss. 8. P. 1701075. DOI:10.1002/adem.201701075.
12. Hong Q.J., Van De Walle A. Prediction of the material with highest known melting point from ab initio molecular dynamics calculations. Phys. Rev. B. 2015. Vol. 92. Iss. 2. P. 020104. DOI:10.1103/PhysRevB.92.020104.
13. Seplyarskii B.S., Brauer G.B., Tarasov A.G. Сombustion of the gasless system Ti + 0.5C in a nitrogen coflow. Fizika goreniya i vzryva. 2011. Vol. 3. P. 52—59 (In Russ.).
14. GOST 20018-74 (ST SEV 1253-78, ISO 3369-75) Sintered hard alloys. Density determination method. Moscow: Izdatel’stvo standartov, 1991 (In Russ.).
15. GOST 2999—75. Metals and alloys. Vickers hardness measurement method. reissue. Management of standardization and certification of raw materials and materials. Moscow: Izdatel’stvo standartov, 1986 (In Russ.).
16. Mukasyan A.S., Rogachev A.S. Combustion synthesis: mechanically induced nanostructured materials. J. Mater. Sci. 2017. Vol. 52. P. 11826—11833. DOI:10.1007/s10853017-1075-9.
17. Ghaffari S.A., Faghihi-Sani M.A., Golestani-Fard F., Mandal H. Spark plasma sintering of TaC—HfC UHTC via disilicides sintering aids. J. Eur. Ceram. Soc. 2013. Vol. 33. Iss. 8. P. 1479—1484. DOI:10.1016/j.jeurceramsoc.2013.01.017.
18. Cedillos-Barraza O., Grasso S., Al Nasiri N., Jayaseelan D.D., Reece M.J., Lee W.E. Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC—HfC fabricated by spark plasma sintering. J. Eur. Ceram. Soc. 2016. Vol. 36. Iss. 7. P. 1539—1548. DOI:10.1016/j.jeurceramsoc.2016.02.009.
19. Zhang C., Gupta A., Seal S., Boesl B., Agarwal A. Solid solution synthesis of tantalum carbide—hafnium carbide by spark plasma sintering. J. Amer. Ceram. Soc. 2017. Vol. 100. Iss. 5. P. 1853—1862. DOI:10.1111/jace.14778.
20. Ivanov M.V., Perevalov T.V., Aliev V.S., Gritsenko V.A., Kaichev V.V. Electronic structure of δ-Ta2O5 with oxygen vacancy: ab initio calculations and comparison with experiment. J. Appl. Phys. 2011. Vol. 110. Iss. 2. P. 024115. DOI:10.1063/1.3606416.
21. Fang Q., Zhang J.-Y., Wang Z., Modreanu M., O’Sullivan B.J., Hurley P.K., Leedham T.L., Hywel D., Audier M.A., Jimenez C., Senateur J.-P. Ian W. Boyda. Interface of ultrathin HfO2 films deposited by UV-photo-CVD. Thin Solid Films. 2004. Vol. 453. P. 203—207. DOI:10.1016/j.tsf.2003.11.186.
22. McCormack S.J., Tseng K.P., Weber R.J., Kapush D., Ushakov S.V., Navrotsky A., Kriven W.M. In-situ determination of the HfO2—Ta2O5-temperature phase diagram up to 3000 °C. J. Amer. Ceram. Soc. 2019. Vol. 102. Iss. 11. P. 7028—7030. DOI:10.1111/jace.16271.
23. Yang Y., Perepezko J. H., Zhang C. Oxidation synthesis of Hf6Ta2O17 superstructures. Mater. Chem. Phys. 2017. Vol. 197. P. 154—162. DOI:10.1016/j.matchemphys.2017.04.055.
24. Zhang C., Boesl B., Agarwal A. Oxidation resistance of tantalum carbide-hafnium carbide solid solutions under the extreme conditions of a plasma jet. Ceram. Int. 2017. Vol. 43. Iss. 17. P. 14798—14806. DOI:10.1016/j.ceramint.2017.07.227.
Review
For citations:
Suvorova V.S., Nepapushev A.A., Moskovskikh D.O., Kuskov K.V. Fabrication and oxidation resistance of the non-stoichiometric tantalum-hafnium carbonitride. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(3):45-54. https://doi.org/10.17073/1997-308X-2022-3-45-54