Features of SHS of multicomponent carbides
https://doi.org/10.17073/1997-308X-2022-4-58-66
Abstract
Combustion of powders of transition metals of titanium PTS (average particle size 57 μm), zirconium PCRK-1 (12 μm), tantalum Ta PM-3 (8 μm), hafnium GFM-1 (4 μm), niobium NBP-1a (21 μm) with carbon black grade P-803 dispersion 1–2 μm was studied. The combustion process of the compressed samples (mass 2.5–6.9 g, height 1.2–1.7 cm, relative density 0.55–0.61) was performed in an inert argon medium at a pressure of 760 mmHg in the constant pressure chamber. Combinations were studied, Me1 + Me2 + Me3 + Me4 + 4C, Me1 + Me2 + Me3 + Me4 + Me5 + 5C. XRD patterns of the mixtures were recorded on a DRON-3М diffractometer (CuKα-radiation). Combustion product sections were studied using a LEO 1450 VP scanning electron microscope (Carl Zeiss, Germany). The fractional composition and particle size distribution of the mixture were determined according to standard procedure using a Microsizer-201C laser particle size analyzer. Combustion velocity, elongation of samples, phase composition of products were determined. The maximum combustion temperature of the mixture (Ti + Hf + Zr + Nb + Ta) + 5C was measured experimentally for the first time. The morphology and microstructure of the reaction products were also observed. Combustion products of mixtures (Ti + Zr + Nb + Ta) + 4C and (Ti + Zr + Nb + Hf) + 4C contain high entropy carbides, which are solid solutions with the same structural type B1 (space group Fm-3m) and having different cell parameters. Product samples of mixtures (Ti + Zr ++ Hf + Ta) + 4C and (Ti + Hf + Zr + Nb + Ta) + 5C contain high entropy and medium entropy carbides, also representing solid solutions with the same structural type B1 (space group Fm-3m). The results of this work can be used in the production of high-entropy and medium-entropy multicomponent carbides.
About the Authors
N. A. KochetovRussian Federation
Cand. Sci. (Phys.-Math.), senior researcher of the Laboratory of dynamics of microheterogeneous processes
142432, Moscow region, Noginsk district, Chernogolovka, Academician Osip’yan str., 8
I. D. Kovalev
Russian Federation
Cand. Sci. (Phys.-Math.), researcher of the Laboratory of X-ray investigation
142432, Moscow region, Noginsk district, Chernogolovka, Academician Osip’yan str., 8
References
1. Merzhanov A.G., Borovinskaya I.P. Self-spreading hightemperature synthesis of refractory compounds. Dokl. Chem. 1972. Vol. 204. No. 2. P. 429—431.
2. Agadzhanyan N.N., Dolukhanyan S.K. Effects of reaction medium on combustion of the Zr—Nb—C system. Combust. Explos. Shock Waves. 1996. Vol. 32. No. 2. P. 145—150. https://doi.org/10.1007/BF02097083.
3. Epishin K.L., Pityulin A.N. Effect of certain parameters on combustion of zirconium and carbon. Combust. Explos. Shock Waves. 1991. Vol. 27. No. 4. P. 415—418. https://doi.org/10.1007/BF00789549.
4. Shkiro V.M., Nersisyan G.A., Borovinskaya I.P. Principles of combustion of tantalum-carbon mixtures. Combust. Explos. Shock Waves. 1978. Vol. 14. No. 4. P. 455—460. https://doi.org/10.1007/BF00742950.
5. Kirdyashkin A.I., Maksimov Y.M., Nekrasov E.A. Titaniumcarbon interaction mechanism in a combustion wave. Combust. Explos. Shock Waves. 1981. Vol. 17. No. 4. P. 377—379. https://doi.org/10.1007/BF00761204.
6. Rogachev A.S. Microheterogeneous mechanism of gasless combustion. Combust. Explos. Shock Waves. 2003. Vol. 39. No. 2. P. 150—158. https://doi.org/10.1023/A:1022956915794.
7. Seplyarskii B.S., Abzalov N.I., Kochetkov R.A., Lisina T.G. Effect of the polyvinyl butyral content on the combustion mode of the (Ti + C) + xNi granular mixture. Russ. J. Phys. Chem. B. 2021. Vol. 15. No. 2. P. 242—249. DOI: 10.1134/S199079312102010X.
8. Seplyarskii B.S., Kochetkov R.A., Lisina T.G., Abzalov N.I. Combustion of Ti—C powders and granules: Impact of carbon allotropy and Ti particle size. Int. J. SHS. 2022. Vol. 31. No. 1. P. 54—56. DOI: 10.3103/S1061386222010071.
9. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004. Vol. 375—377. P. 213— 218. https://doi.org/10.1016/j.msea.2003.10.257.
10. Rogachev A.S., Fourmont А., Kovalev D.Yu., Vadchenko S.G., Kochetov N.A, Shkodich N.F., Baras F., Politano O. Mechanical alloying in the Co—Fe—Ni powder mixture: Experimental study and molecular dynamics simulation. Powder Technol. 2022. Vol. 399. Р. 117187. https://doi.org/10.1016/j.powtec.2022.117187.
11. Zhang Z., Sheng H., Wang Z., Gludovatz B., Zhang Z., George E.P., Yu Q., Mao S.X., Ritchie R.O. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat. Commun. 2017. Vol. 8. Art. 14390. P. 1—8. https://doi.org/10.1038/ncomms14390.
12. Laplanche G., Kostka A., Reinhart C., Hunfeld J., Eggeler G., George E.P. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to highentropy CrMnFeCoNi. Acta Mater. 2017. Vol. 128. P. 292—303. https://doi.org/10.1016/j.actamat.2017.02.036.
13. Liu D., Wen T., Ye B., Chu Y. Synthesis of superfine high-entropy metal diboride powders. Scr. Mater. 2019. Vol. 167. P. 110—114. https://doi.org/10.1016/j.scriptamat.2019.03.038.
14. Kochetov N.A., Rogachev A.S., Kovalev I.D., Vadchenko S.G. Combustion of transition metal—boron mixtures in argon gas. Int. J. SHS. 2021. Vol. 30. No. 4. P. 223—228. DOI:10.3103/S106138622104004X.
15. Braic V., Vladescu A., Balaceanu M., Luculescu C.R., Braic M. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf. Coat. Technol. 2012. Vol. 211. P. 117—121. DOI: 10.1016/j.surfcoat.2011.09.033.
16. Yan X., Constantin L., Lu Y.F., Silvain J.-F., Nastas M.,Cui B. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. J. Am. Ceram. Soc. 2018. Vol. 101. No. 10. P. 4486—4491. DOI: 10.1111/jace.15779.
17. Zhang Q., Zhang J., Li N., Chen W. Understanding the electronic structure, mechanical properties, and thermodynamic stability of (TiZrHfNbTa)C combined experiments and first-principles simulation. J. Appl. Phys. 2019. Vol. 126. No. 2. Art. 025101. P. 1—7. https://doi.org/10.1063/1.5094580.
18. Csanádi T., Castle E., Reece M., Dusza J. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression. Sci. Rep. 2019. Vol. 9. P. 10200. DOI: 10.1038/s41598-019-46614-w.
19. Castle E., Csanádi T., Grasso S., Dusza J., Reece M. Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep. 2018. Vol. 8. P. 8609. DOI:10.1038/s41598-018-26827-1.
20. Moskovskikh D.O., Vorotilo S., Sedegov A.S., Kuskov K.V., Bardasova K.V., Kiryukhantsev-Korneev Ph.V., Zhukovskyi M., Mukasyan A.S. High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering. Ceram. Int. 2020. Vol. 46. P. 19008—19014. https://doi.org/10.1016/j.ceramint.2020.04.230.
21. Kovalev D.Yu., Kochetov N.A., Chuev I.I. Fabrication of high-entropy carbide (TiZrHfTaNb)С by high-energy ball milling. Ceram. Int. 2021. Vol. 47. P. 32626—32633.https://doi.org/10.1016/j.ceramint.2021.08.158.
22. Kochetov N.A., Sytschev A.E. Effects of magnesium on initial temperature and mechanical activation on combustion synthesis in Ti—Al—Mg system. Mater. Chem.Phys. 2021. Vol. 257. P. 123727. https://doi.org/10.1016/j.matchemphys.2020.123727.
23. Kamynina O.K., Rogachev A.S., Sytschev A.E., Umarov L.M. Spontaneous deformation during self-propagating high-temperature synthesis. Int. J. SHS. 2004. Vol. 13. No. 3. P. 193—204.
24. Kamynina O.K., Rogachev A.S., Umarov L.M. Deformation dynamics of a reactive medium during gasless combustion. Combust. Explos. Shock Waves. 2003. Vol. 39. No. 5. P. 548—551. https://doi.org/10.1023/A:1026161818701.
25. Vershinnikov V.I., Filonenko A.K. Pressure dependence of rate of gas-free combustion. Combust. Explos. Shock Waves. 1978. Vol. 14. No. 5. P. 588—592. https://doi.org/10.1007/BF00789716.
26. Seplyarskii B.S. The nature of anomalous dependence of burning velocity in «gasless» systems on sample diameter. Dokl. Phys. Chem. 2004. Vol. 396. No. 4—6.P. 130—133.
Review
For citations:
Kochetov N.A., Kovalev I.D. Features of SHS of multicomponent carbides. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(4):58-66. https://doi.org/10.17073/1997-308X-2022-4-58-66