Air-thermal oxidation of diamond nanopowders obtained by the methods of mechanical grinding and detonation synthesis
https://doi.org/10.17073/1997-308X-2022-4-67-83
Abstract
In this work, using the methods of X-ray phase analysis, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy, the features of the impact of annealing in air within the temperature range of t = 200÷÷550 °C on the morphology, elemental and phase composition, chemical state and structure of primary particles of nanopowders obtained by grinding natural diamond and the method of detonation synthesis are studied. It is shown that heat treatment in air at given values of temperature and heating time does not affect the elemental composition and atomic structure of primary particles of nanopowders obtained both by the methods of detonation synthesis (DND) and natural diamond grinding (PND). Using XPS, Raman spectroscopy, and transmission electron microscopy, it has been found that annealing in air within the temperature range of 400–550 °C results in the effective removal of amorphous and graphite-like carbon atoms in the sp2- and sp3-states from diamond nanopowders by oxidation with atmospheric oxygen. In the original DND nanopowder, containing about 33.2 % of non-diamond carbon atoms of the total number of carbon atoms, after annealing for 5 h at a temperature of 550 °C, the relative number of nondiamond carbon atoms in the sp2-state decreased to ~21.4 %. In this case, the increase in the relative number of carbon atoms in the sp3-state (in the lattice of the diamond core) and in the composition of oxygen-containing functional groups ranged from ~39.8 % to ~46.5 % and from ~27 % to ~32.1 %, respectively. In the PND nanopowder, which prior to annealing contains about 10.6 % of non-diamond carbon atoms in the sp2-state of the total number of carbon atoms, after annealing under the same conditions as the DND nanopowder, their relative number decreased to 7.1 %. The relative number of carbon atoms in the sp3-state increased from 72.9 % to 82.1 %, and the proportion of carbon atoms in the composition of oxygen-containing functional groups also slightly increased from 10.2 % to 10.8 %. It is demonstrated that the annealing of PND and DND nanopowders in air leads to a change in their color, they become lighter as a result of oxidation of non-diamond carbon by atmospheric oxygen. The maximum effect is observed at a temperature of 550 °C and an annealing time of 5 h. In this case, the weight loss of PND and DND nanopowders after annealing was 5.37 % and 21.09 %, respectively. The significant weight loss of DND nanopowder compared to PND is primarily caused by the high content of non-diamond carbon in the initial state and the high surface energy of primary particles due to their small size.
About the Authors
P. P. SharinRussian Federation
Cand. Sci. (Phys.-Math.), lead researcher of the Department of physicochemistry
677980, Rep. Sakha, Yakutsk, Oktyabrskaya str., 1
A. V. Sivtseva
Russian Federation
researcher of the Department of material science
677980, Rep. Sakha, Yakutsk, Oktyabrskaya str., 1
V. I. Popov
Russian Federation
Cand. Sci. (Phys.-Math.), senior researcher of the scientific and technological laboratory «Graphene nanotechnologies» of the Physical and Technical Institute
677000, Rep. Sakha, Yakutsk, Belinskii str., 58
References
1. Dolmatov V.Y. Detonation synthesis ultradispersed diamonds: properties and applications. Russ. Chem. Rev. 2001. Vol. 70. No. 7. P. 607—626. DOI: 10.1070/RC2001v070n07ABEH000665.
2. Novikov N.V., Bogatyreva G.P., Voloshin M.N. Detonation diamond in Ukraine. Phys. Solid State. 2004. Vol. 46. No. 4. P. 600—605. DOI: 10.1134/1.1711432.
3. Vereshchagin A.L. Structure and reactivity of detonation diamonds. Yuzhno-sibirskii nauchnyi vestnik. 2017. Vol. 18. No. 2. P. 24—30 (In Russ.).
4. Osswald S., Yuchin G., Mochalin V., Kucheyev S.O., Gogotsi Y. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 2006. Vol. 128. No. 35. P. 11635—11642. DOI: 10.1021/ja063303n.
5. Plotnikov V.A., Dem’yanov B.F., Makarov S.I., Cherkov A.G. Atomic structure of detonation diamond nanocrystals. Fundamental’nye problemy sovremennogo materialovedeniya. 2012. Vol. 9. No. 4. P. 521—526 (In Russ.).
6. Sharin, P.P., Sivtseva, A.V., Yakovleva, S.P., Kopyrin M.M., Kuz’min S.A., Popov V.I., Nikiforov L.A. Comparison of morphological and structural characteristics of nanopowder particles fabricated by grinding natural diamond and detonation synthesis. Russ. J. Non-Ferr. Met. 2020. Vol. 61. No. 4. P. 456—465. DOI: 10.3103/S1067821220040100.
7. Stehlik S., Varga M., Ledinsky M., Jirasek V., Artemenko A., Kozak H, Ondic L., Skakalova V., Argentero G., Pennycook T., Meyer J.C., Fejfar A., Kromka A., Rezek B. Size and purity control of HPHT nanodiamonds down to 1 nm. J. Phys. Chem. C. 2015. Vol. 119. No. 49. P. 27708—27720. DOI: 10.1021/acs.jpcc.5b05259.
8. Plotnikov V.A., Dem’yanov B.F., Makarov S.V., Bogdanov D.G. Impurity detonation nanodiamond subsystem. Fundamental’nye problemy sovremennogo materialovedeniya. 2013. Vol. 10. No. 4. P. 487—492 (In Russ.).
9. Sharin P.P., Sivtseva A.V., Popov V.I. X-rays photoelectron spectroscopy of nanodiamonds obtained by grinding and denotation synthesis. Tech. Phys. 2021. Vol. 66. No. 2.P. 275—279. DOI: 10.1134/S1063784221020183.
10. Yongwei Zhu, Zhijing Feng, Baichun Wang, Xianyang Xu. Dispersion of nanodiamond and ultra-fine polishing of quartz wafer. China Particuology. 2004. Vol. 2. No. 4. P. 153—156. DOI: 10.1016/S1672-2515(07)60046-3.
11. Hirata A., Igarashi M., Kaito T. Study on solid lubricant properties of carbon onion produced by heat treatment of diamond cluster or particles. Tribol. Int. 2004. Vol. 39. P. 899—905. DOI:10.1016/j.triboint.2004.07.006.
12. Zhao X., Wang T., Li Y., Huang L., Handschuh-Wang S. Polydimethylsiloxane/nanodiamond composite sponge for enhanced mechanical or wettability performance. Polymers. 2019. Vol. 11. No. 6. P. 948—960. DOI: 10.3390/polym11060948.
13. Afandi A., Howkins A., Boyd I., Jackman R. Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds. Sci. Rep. 2018. Vol. 8. No. 1. P. 1—10. DOI: 10.1038/s41598-018-21670-w.
14. Hsu S-H., Kang W.P., Davidson J.L., Huang J.H., Kerns D.V. Jr. Nanodiamond vacuum field emission integrated differential amplifier. IEEE Trans. Electron Devices. 2013. Vol. 60. No. 1. P. 487—493. DOI: 10.1109/ TED.2012.2228485.
15. Tveritinova E.A., Zhitnev Yu.N, Kulakova I.I., Maslakov K.I., Nesterova E.A., Kharlanov A.N., Ivanov A.S., Savilov S.V., Lunin V.V. Effect of structure and surface properties on the catalytic activity of nanodiamond in the conversion of 1,2-dichloroethane. Russ. J. Phys. Chem. A. 2015. Vol. 89. No. 4. P. 680—687. DOI: 10.1134/S0036024415040251.
16. Lin Y., Sun X., Su D., Centi G., Perathoner S. Catalysis by hybrid sp2/sp3nanodiamonds and their role in the design of advanced nanocarbon materials. Chem. Soc. Rev. 2018. Vol. 47. No. 22. P. 8438—8473. DOI: 10.1039/C8CS00684A.
17. Yakovlev R.Yu., Solomatin A.S., Leonidov N.B., Kulakova I.I., Lisichkin G.V. Detonation nanodiamond — a perspective carrier for drug delivery systems. Russ. J. Gen. Chem. 2014. Vol. 84. No. 2. P. 379—390. DOI: 10.1134/S1070363214020406.
18. Huang H., Pierstorff E., Ho D., Osawa E. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007. Vol. 7. No. 11. P. 3305—3314. https://doi.org/10.1021/nl071521o.
19. Schrand A.M., Dai L., Schlager J.J., Hussain S.M., Osawa E. Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam. Relat. Mater. 2007. Vol. 16. No. 12. P. 2118—2123. https://doi.org/10.1016/j.diamond.2007.07.020.
20. Tsai L.-W., Lin Y.-C., Perevedentseva E., Lugovtsov A., Priezzhev A., Cheng C.-L. Nanodiamonds for medical applications: interaction with blood in vitro and in vivo. Int. J. Mol. Sci. 2016. Vol. 17. No. 7. P. 1111 (17). DOI:10.3390/ijms17071111.
21. Denisov S.A., Dzidziguri E.L., Spitsyn B.V., Sokolina G.A., Boldyrev N.Y. Purification and modification of the product of detonation synthesis of diamond. Uchenye zapiski Petrozavodskogo gos. un-ta. Ser. Fiziko-matematicheskie nauki. 2011. No. 2. P. 89—98 (In Russ.).
22. Chiganov A.S. Selective inhibition of the oxidation of nanodiamonds for their cleaning. Phys. Solid State. 2004. Vol. 46. No. 4. P. 620—621. https://doi.org/10.1134/1.1711436.
23. Korepanov V.I., Hamaguchi H., Osawa E., Ermolenkov V., Lednev I., Etzold B., Levinson O., Zousman B., Eprella C.P., Chang H-C. Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon. 2017. No. 121. P. 322—329. https://doi.org/10.1016/j.carbon.2017.06.012.
24. Scofield J.H. Hartree-slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 1976. Vol. 8. No. 2. P. 129—137. DOI:10.1016/0368-2048(76)80015-1.
25. Orlov Yu.L. Diamond mineralogy. Moscow: Nauka, 1984 (In Russ.).
26. Gurin V.A., Gabelkov S.V., Poltavtsev N.S., Gurin I.V., Fursov S.G. Crystal structure of pyrographite and catalytically deposited carbon. Voprosy atomnoi nauki i tekhniki. Ser. Fizika radiatsionnykh povrezhdenii i radiatsionnoe materialovedenie. 2006. Vol. 89. No. 4. P. 195—199 (In Russ.).
27. Shtols A.K., Medvedev A.I., Kurbatov L.V. X-ray analysis of microstresses and sizes of coherent scattering regions in polycrystalline materials. Ekaterinburg: UGTU—UPI, 2005 (In Russ.).
28. Andreev V.D., Sozin Y.I. Structure of ultradisperse diamonds. Phys. Solid State. 1999. Vol. 41. No. 10. P. 1736—1739. https://doi.org/10.1134/1.1131077.
29. http://xpspeak.software.informer.com/4.1.
30. Aleksenskii A.E., Osipov V.Y., Vul’ A.Y., Ber B.Y., Smirnov A.B. Optical properties of nanodiamond layers. Phys. Solid State. 2001. Vol. 43. No. 1. P. 145—150. DOI: 10.1134/1.1340200.
31. Fang C., Zhang Yu., Shen W., Sun Sh., Zhang Zh., Xue L., Jia X. Synthesis and characterization of HPHT large single-crystal diamonds under the simultaneous influence of oxygen and hydrogen. Cryst. Eng. Comm. 2017. Vol. 19. No. 38. P. 5727—5734. DOI: 10.1039/C7CE01349C.
32. Qi M., Xiao J., Cheng Y., Wang Zh., Jiang A., Guo Y., Tao Z. Effect of various nitrogen flow ratios on the optical properties of (Hf : N)—DLC films prepared by reactive magnetron sputtering. AIP Adv. 2017. Vol. 7. No. 8. P. 085012. DOI: 10.1063/1.4993631.
33. Shvidchenko A.V., Zhukov A.N., Dideikin A.T., Baidakova M.V., Shestakov M.S., Shnitov V.V., Vul’ A.Ya. Electrical properties of the surface of single-crystal particles of detonation nanodiamond obtained by annealing agglomerates in air. Kolloidnyi Zhurnal. 2016. Vol. 78. No. 2. P. 218—224 (In Russ.).
34. Araùjo M.P., Soares O.S.G.P., Fernandes A.J.S., Pereira M.F.R., Freire C. Tuning the surface chemistry of graphene flakes: new strategies for selective oxidation. RSC Adv. 2017. No. 7. P. 14290. DOI: 10.1039/c6ra28868e.
35. Li H., Xu T., Wang C., Chen J., Zhou H., Liu H. Effect of relative humidity on the tribological properties of hydrogenated diamond-like carbon films in a nitrogen environment. J. Phys. D: Appl. Phys. 2005. Vol. 38. P. 62—69. DOI: 10.1088/0022-3727/38/1/011.
36. Polyanskaya E.M., Taran O.P. Study of functional groups on the surface of the oxidized carbon material Sibunit by acid-base titration and XPS. Vestnik Tomskogo gos. un-ta. Khimiya. 2017. No. 10. P. 6—26 (In Russ.).
37. Rey A., Faraldos M., Bahamonde A., Casas J.A., Zazo J.A., Rodríguez J.J. Role of the activated carbon surface on catalytic wet peroxide oxidation. Ind. Eng. Chem. Res. 2008. Vol. 47. No. 21. P. 8166—8174. DOI: 10.1021/ie800538t.
38. Bogdanov D.G., Makarov S.V., Plotnikov V.A. Thermodesorption of impurities from detonation nanodiamond. Tech. Phys. Lett. 2012. Vol. 38. No. 4. P. 199—202. https://doi.org/10.1134/S1063785012020198.
39. Plotnikov V.A., Bogdanov D.G., Makarov S.V., Bogdanov A.S. Sorption and desorption properties of detonation nanodiamond. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya. 2017. Vol. 60. No. 9. P. 27—32 (In Russ.).
40. Koshcheev A.P., Gorokhova P.V., Gromova M.D., Perova A.A., Ott U. The chemistry of the surface of modified detonation nanodiamonds of different types. Russ. J. Phys. Chem. A. 2008. Vol. 82. No. 10. P. 1708—1714. DOI: 10.1134/S0036024408100129.
Review
For citations:
Sharin P.P., Sivtseva A.V., Popov V.I. Air-thermal oxidation of diamond nanopowders obtained by the methods of mechanical grinding and detonation synthesis. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2022;(4):67-83. https://doi.org/10.17073/1997-308X-2022-4-67-83