Structuring and Phase Forming During Receiving of Composite Ionic-Plasma Vacuum-Arc Nano Coatings and its Thermal Stability
https://doi.org/10.17073/1997-308X-2014-2-43-50
Abstract
There were carrying out investigations of processes of structuring and phase formation during receiving of composite ionic-plasma vacuum- arc nano crystal coatings TiN–Ni in broad interval of concentrations of nickel (from 0 to 26 at.%). There was defined that introduction of Ni into composition of coating leads to milling of crystallites of nitride phase. Average grain size of TiN reduced from 100–120 to 15–18 nm under alteration of concentration Ni from 0 to 12 at.% and normal distribution pf grain size. Further increasing of Ni composition accompanied with transition to polymodal distribution of particles with increasing of average diameter up 27 nm for tertiary mode. At concentration of Ni up 12–13 at.% nickel in coating is in X-ray amorphous state. Under it increasing more than 13 at.% in the composition of coating is formed intermetallide TiNi. This, in turn, stipulated appearance of porosity in the structure of deposited layer. Simultaneously with formation of intermetallide decreasing blocking role of nickel, and this is appeared in the growth of single grains of TiN up 30–35 nm. Coatings TiN–Ni are characterized by thermal stability of structure and composition at heating up 800 °C.
About the Authors
I. V. BlinkovRussian Federation
A. O. Volkhonsky
D. S. Belov
N. Yu. Tabachkova
M. I. Voronova
V. A. Andreev
M. N. Sorokin
References
1. Sundgren J.-E. // Thin Solid Films. 1985. Vol. 128. P. 128.
2. Veprek S., Reiprich S. // Thin Solid Films. 1995. Vol. 268. Р. 64–71. 3. Блинков И.В., Волхонский А.О., Юдин А.Г. // Физика и химия обраб. матер. 2011. No 6. С. 18.
3. Veprek S., Veprek-Heijman M. G. J., Karvankova P., Prochazka J. // Thin Solid Films. 2005. Vol. 476. Р. 1–9.
4. Блинков И. В., Волхонский А. О., Лаптев А. И. и др. // Изв. вузов. Порошк. металлургия и функц. покрытия. 2013. No 2. С. 54–59.
5. Ivanov Yu. F., Koval N. N., Krysina O. V. et al. // Surface and Coat. Technol. 2012. Vol. 207. Р. 430–434.
6. Li Z. G., Miyake S., Kumagai M. et al. // Surface and Coat. Technol. 2004. Vol. 183. P. 62–68.
7. Akbari A., Riviere J. P., Templier C., Le Bourhis E. // Surface and Coat. Technol. 2006. Vol. 200. Р. 6298–6302.
8. Шелехов Е. В., Иванов А. Н., Фомичева Е. И. // Завод. лаб. 1989. No 12. С. 41–45.
9. Шелехов Е. В., Свиридова Т. А. // МиТОМ. 2000. No 8. С. 16–19.
10. Иванов А. Н., Шелехов Е. В., Кузьмина Е. Н. // Завод. лаб. Диагностика материалов. 2004. Т. 70, No 11. С. 29–33.
11. Кислый П. С., Боднарук М. С., Боровикова М. С. и др. // Керметы. Киев: Наук. думка, 1985. С. 272.
12. Коузов П. А. Основы анализа дисперсного состава промышленных пылей и измельченных материалов. Л.: Химия,1974.
13. Морохов И. Д., Трусов Л. И., Чижик С. П. Ультрадисперсные металлические среды. М.: Атомиздат, 1977.
Review
For citations:
Blinkov I.V., Volkhonsky A.O., Belov D.S., Tabachkova N.Yu., Voronova M.I., Andreev V.A., Sorokin M.N. Structuring and Phase Forming During Receiving of Composite Ionic-Plasma Vacuum-Arc Nano Coatings and its Thermal Stability. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2014;(2):43-50. (In Russ.) https://doi.org/10.17073/1997-308X-2014-2-43-50