Regularities of Reactions of Carbonitrides and Oxycarbides of Titanium with Nickel
https://doi.org/10.17073/1997-308X-2014-3-49-54
Abstract
Made analysis of special peculiarities and regularities of reactions of titanium carbide, alloyed on metalloid sub lattice (N, O) with nickel melt. There was established that partial replacement of carbon in TiC on nitrogen decreases velocity of it dissolution in nickel, and increases degree of incongru- ence of process (preemptive, in comparison with titanium, transition into carbon melt). Concentration dependence of dissolution rate TiCxNz in nickel changes their sign on opposite with approximation of system to equilibrium. Carbonitrile of titanium as single phase is not recrystallized through nickel melt, dominantly has place recrystallization of its carbide constituent. There was elucidated that partial replacement of carbon in TiC on oxy- gen increases velocity of its dissolution in nickel. Process of dissolution of oxycarbide TiC0,6O0,4 in nickel is accompanied by graduate loss of it carbon, up to formation of titanium mono oxide, and further its disproportionation. Peculiarity of interaction mechanism of titanium oxycarbide with nickel melt is determined by reaction in liquid phase [C] + [O] = CO .
About the Authors
V. A. ZhilyaevRussian Federation
E. I. Patrakov
Russian Federation
References
1. Кипарисов С.С., Левинский Ю.В., Петров А.П. Кар бид титана: Получение, свойства, применение. М.: Металлургия, 1987.
2. Lengauer W., Eder A. Carbides: Transition Metal Solid state Chemistry. Encyclopedia of Inorganic Chemistry. Chichester: John Willey & Sons, 2005.
3. Durlu N. // J. Eur. Ceram. Soc. 1999. Vol. 19. P. 2415.
4. Bellosi A., Calzavarini R., Faga M.G. et al. // J. Mater. Proc. Technol. 2003. Vol. 143–144. P. 527.
5. Chun D.I., Kim D.Y., Eun K.Y. // J. Amer. Ceram. Soc. 1993. Vol. 76, No 8. P. 2049.
6. Yanaba Y., Takahashi T., Hayashi K. A. // J. Jap. Soc. Powder & Powder Metallurgy. 2004. Vol. 51, No 5. P. 374.
7. Жиляев В. А., Патраков Е. И. // Изв. вузов. Порошк. металлургия и функц. покрытия. 2014. No 1. С. 39. 8. Zhang S. // Key Eng. Mater.1998. Vol. 138–140. P. 521.
8. Zhou S., Zhao W., Xiong W. // Int. J. Refract. Meter. Hard Mater. 2009. Vol. 27. P. 26.
9. Крушинский А. Н., Турцевич И. В., Андросов В. Н., Прокопьев В. П. // Физикомеханические и эксплуатационные свойства инструментальных и конструкционных материалов. Красноярск: КрПИ, 1976. Вып. 5. С. 51.
10. Фромм Е., Гебхард Е. Газы и углерод в металлах / Пер. с нем. Под ред. Б.В. Линчевского. М.: Металлургия, 1980.
11. Жиляев В.А. // Изв. вузов. Порошк. металлургия и функц. покрытия. 2014. No 2. С. 31.
12. Жиляев В. А. // Материаловедение. 2012. No 3. С. 3.
13. Металлохимические свойства элементов Периодической системы: Справочник / Под ред. И.И. Корнило ва. М.: Наука, 1966.
14. Kowanda C., Speidel M. O. // Scripta Mater. 2003. Vol. 48. P. 1073.
15. Niki E., Masato K. // J. Jap. Inst. Met. 1970. Vol. 34, No 9. P. 879.
16. Патраков Е. И. Контактное взаимодействие легированного карбида титана с расплавами на основе никеля: Дис. ... канд. хим. наук. Екатеринбург: ИХТТ УрО РАН, 2009.
Review
For citations:
Zhilyaev V.A., Patrakov E.I. Regularities of Reactions of Carbonitrides and Oxycarbides of Titanium with Nickel. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2014;(3):49-54. (In Russ.) https://doi.org/10.17073/1997-308X-2014-3-49-54