Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

NANOMATERIALS OF SHS TECHNOLOGY FOR TRIBOLOGICAL APPLICATIONS: А REVIEW

https://doi.org/10.17073/1997-308X-2016-4-17-33

Abstract

The paper reviews the results of using the self-propagating high-temperature synthesis (SHS) powder technology to obtain various nanomaterials, which can be utilized for tribological purposes. Firstly, these are low-cost nanopowders of sulfides, oxides, nitrides, carbides, borides and metals, which can be used as solid lubricants and friction modifiers for liquid and semisolid lubricants. Secondly, these are solid compact nanostructured ceramic and composite materials for the production of tribological structures. This type of nanomaterials can be obtained either ex situ from SHS nanopowders by sintering or introducing into the melt or in situ in a single stage from initial powdered reagents by the methods of gasostatiс SHS technology, force SHS compaction, SHS casting, and SHS in the melt, which significantly simplifies and cheapens production of such materials. Thirdly, these are SHS materials for application of nanostructured coatings of different thickness with high wear resistance and low friction factor, such as nanostructured materials for surfacing and spraying, electro-spark alloying electrodes, multicomponent targets for magnetron sputtering and cathodes for vacuum arc evaporation, nanosized fillers for electrochemical and electroless chemical coatings.

About the Author

A. P. Amosov
Samara State Technical University
Russian Federation
Dr. Sci. (Phys.-Math.), prof., head of Department of metals science, powder metallurgy, nanomaterials


References

1. Basu B., Kalin M. Tribology of ceramics and composites: a materials science perspective. Hoboken, New Jersey: John Wiley & Sons, Inc., 2011.

2. Achanta S., Dress D., Celis J.-P. Nanocoatings for tribo-logical applications. In: Nanocoatings and ultra-thin films: Technologies and applications. Eds. A.S.H. Makhlouf, I. Tiginyanu. Cambridge: Woodhead Publishing Limited, 2011. P. 355—396.

3. Tang Z., Li S. A review of recent developments of friction modifier for liquid lubricants (2007-present). Curr. Opin. Solid State Mater. Sci. 2014. Vol. 18. No. 3. P. 119—139.

4. Levashov E.A., Rogachev A.S., Kurbatkina V.V., Maksimov Yu.M., Yukhvid V.I. Perspektivnye materialy i tekhnologii samorasprosranyayushchegosya vysokotemperaturnogo sinteza [Advanced materials and technology of self-propagating high-temperature synthesis]. Moscow: Izd. dom MISIS, 2011.

5. Amosov A.P., Borovinskaya I.P., Merzhanov A.G., Sychev A.E. Principles and methods for regulation of dispersed structure of SHS powders: from monocrystal-lites to nanoparticles. Int. J. SHS. 2005. Vol. 14. No. 3. P. 165—186.

6. Amosov A.P. Materialy i pokrytiya tribotekhnicheskogo naznacheniya, poluchaemye po tekhnologii SVS [Materials and coatings of tribotechnical purpose, obtained by SHS technology]. Remont, vosstanovlenie, modernizatsiya. 2010. No. 1. P. 15—20.

7. Puchkov V.N., Zaskalko P.P. Issledovanie vliyaniya do-bavok nanostrukturirovannykh materialov na tribologicheskie svoistva smazochnykh masel [Study of influence of additives of nanostructured materials on the tribologi-cal properties of lubricating oils]. Trenie i smazka v mashinakh i mekhanizmakh. 2010. No. 11. P. 25—30.

8. Akbulut M. Nanoparticle-based lubrication systems. Powder Metall. Mining. 2012. Vol. 1. No. 1. 1000e101 (open access). URL: http://dx.doi.org/10.4172/2168-9806/1000e101 (accessed: 16.03.2016).

9. An V., Bozheyev F., Richencoeur F., Irtegov Yu. Synthesis and characterization of nanolamellar tungsten und molybdenum disulfides. Mater. Lett. 2011. Vol. 65. No. 15—16. P. 2381—2383.

10. An V.V., Irtegov Yu.A., Yavorovsky N.A., Galanov A.I., Pogrebenkov V.M. Tribologicheskie svoistva nanosloistykh disul’fidov vol’frama i molibdena [Tribological properties of nanolamellar disulfides of tungsten and molybdenum]. Izv. vuzov. Fisika. 2011. Vol. 54. No. 11. P. 326—331.

11. Alves S.M., Barros B.S., Trajano M.F., Ribeiro K.S.B., Moura E. Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol. Int. 2013. Vol. 65. P. 28—36.

12. Patil K.C., Hedge M.S., Tanu R. Chemistry of nanocrystalline oxide materials. Combustion synthesis, properties and applications. Singapore: World Scientific, 2008.

13. Mukasyan A.S., Dinka P. Novel approaches to solution-combustion synthesis of nanomaterials. Int. J. SHS. 2007. Vol. 16. No. 1. P. 23—35.

14. Martirosyan K.S. Carbon combustion synthesis of ceramic oxides nanopowders. Adv. Sci. Technol. 2010. Vol. 63. P. 236—245.

15. Bichurov G.V. Halides in SHS azide technology of nitrides obtaining. In: Nitride Ceramics: Combustion synthesis, properties, and applications. Eds. A.A. Gromov, L.N. Chukhlomina. Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA, 2015. P. 229—263.

16. Nersisyan H.H., Lee J.H., Won C.W. SHS for a large scale synthesis method of transition metal nanopowders. Int. J. SHS. 2003. Vol. 12. No. 1. P. 149—158.

17. Zakorzhevskii V.V., Borovinskaya I.P. Some regularities of α-Si3N4 synthesis in a commercial SHS reactor. Int. J. SHS. 2000. Vol. 9. No. 2. P. 171—191.

18. Zakorzhevskii V.V., Borovinskaya I.P. SHS of α-Si3N4 from fine Si powders in the presence of blowing agents. Int. J. SHS. 2011. Vol. 20. No. 3. P. 156—160.

19. Chukhlomina L.N., Ivanov Yu.F., Maksimov Yu.M., Akhunova Z.S., Krivosheeva E.N. Preparation of submicron silicon nitride powders via self-propagating high-temperature synthesis. Powder Metallurgy and Metal Ceramics. 2007. Vol. 46. Iss. 1. P 8—11.

20. Wang Q., Liu G., Yang J., Chen Y., Li J. Preheating-assisted combustion synthesis of β-Si3N4 powders at low N2 pressure. Mater. Res. Bull. 2013. Vol. 48. Iss. 3. P. 1321—1323.

21. Yang J., Han L., Chen Y., Liu G., Lin Z., Li J. Effects of pelletization of reactants and diluents on the combustion synthesis of Si3N4 powder. J. Alloys Compd. 2012. Vol. 511. Iss. 1. P. 81—84.

22. Cui W., Zhu Y., Ge Y., Kang F., Yuan X., Chen K. Effects of nitrogen pressure and diluent content on the morphology of gel-cast-foam-assisted combustion synthesis of elongated β-Si3N4 particles. Ceram. Int. 2014. Vol. 40. Iss. 8. Pt. A. P. 12553—12560.

23. Nitride ceramics: Combustion synthesis, properties, and applications. Eds. A.A. Gromov, L.N. Chukhlomina. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2015.

24. Mukasyan A.S., Lin Ya-Ch., Rogachev A.S., Moskovskikh D.O. Direct combustion synthesis of silicon carbide nanopowder from the elements. J. Am. Ceram. Soc. 2013. Vol. 96. No. 1. P. 111—117.

25. Moskovskikh D.O., Lin Ya-C., Rogachev A.S., McGinn P.J., Mukasyan A.S. Spark plasma sintering of SiC powders produced by different combustion synthesis routes. J. Eur. Ceram. Soc. 2015. Vol. 35. P. 477—486.

26. Palmero P. Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods. Nanomate-rials. 2015. Vol. 5. No. 2. P. 656—696.

27. Zakorzhevskii V.V., Borovinskaya I.P., Chevykalova L.A., Kelina I.Ya. Combustion synthesis of α-Si3N4—(MgO, Y2O3) composites. Powder Metallurgy and Metal Ceramics. 2007. Vol. 46. No. 1—2. P. 8—12.

28. Zhao Y.S., Yang Y., Li J.T., Borovinskaya I.P., Smirnov K.L. Combustion synthesis and tribological properties of SiAlON-based ceramic composites. Int. J. SHS. 2010. Vol. 19. No. 3. P 172—177.

29. Smirnov K.L. Combustion synthesis of hetero-modulus SiAlON—BN composites. Int. J. SHS. 2015. Vol. 24. No. 4. P. 220—226.

30. Zhang Y., He X., Han J., Du Sh. Combustion synthesis of hexagonal boron nitride-based ceramics. J. Mater. Process. Technol. 2001. Vol. 116. P. 161—164.

31. Zhang G.-J., Yang J.-F., Ando M., Ohji T. Nonoxide—boron nitride composites: in situ synthesis, microstructure and properties. J. Eur. Ceram. Soc. 2002. Vol. 22. No. 14—15. P. 2551—2554.

32. Carrapichano J.M., Gomes J.R., Silva R.F. Tribological be-havior of Si3N4-BN ceramic materials for dry sliding applications. Wear. 2002. Vol. 253. P. 1070—1076.

33. Amosov A.P., Shiganova L.A., Bichurov G.V., Kerson I.A. Combustion synthesis of TiN—BN nanostructured composite powder with the use of sodium azide and precursors of titanium and boron. Modern Appl. Sci. 2015. Vol. 9. No. 3. P. 133—144.

34. He W., Zhang B., Zhuang H., Li W. Combustion synthesis of Si3N4—TiN composite powders. Ceram. Int. 2004. Vol. 30. Iss. 8. P. 2211—2214.

35. Evdokimov A.A., Sivkov A.A., Gerasimov D. Yu. Obtaining ceramic based on Si3N4 and TiN by spark plasma sin-tering. Glass Ceram. 2016. Vol. 72. Iss. 9. P 381—386.

36. Yoshimura M., Komura O., Yamakawa A. Microstructure and tribological properties of nano-sized Si3N4. Scr. Mater. 2001. Vol. 44. P. 1517—1521.

37. Tatami J., Kodama E., Watanabe H., Nakano H., Wakihara T., Komeya K., Meguro T., Azushima A. Fabrication and wear properties of TiN nanoparticle-dispersed Si3N4 ceramics. J. Ceram. Soc. Jap. 2008. Vol. 116. No. 6. P. 749—754.

38. Kata D., Ohyanagi M., Munir Z.A. Induction-field-activated self-propagating high-temperature synthesis of AlN—SiC solid solutions in the Si3N4—Al—C system. J. Mater. Res. 2000. Vol. 15. No. 11. P. 2514—2525.

39. Vallauri D., Atías Adrián I.C., Chrysanthou A. TiC—TiB2 composites: A review of phase relationships, processing and properties. J. Eur. Ceram. Soc. 2008. Vol. 28. Iss. 8. P. 1697—1713.

40. Vallauri D., DeBenedetti B.L., Jaworska, Klimczyk P., Rod-riguez M.A. Wear-resistant ceramic and metal—ceramic ultrafine composites fabricated from combustion synthe-sized metastable powders. Int. J. Refract. Met. Hard Mater. 2009. Vol. 27. Iss. 6. P. 996—1003.

41. Barsoum M.W. MAX phases. Properties of machinable ternary carbides and nitrides. Weinheim: Wiley-VCH, 2013.

42. Myhra S., Summers J.W.B., Kisi E.H. Ti3SiC2 a layered ceramics exhibiting ultra-low friction. Mater. Lett. 1999. Vol. 39. No. 1. P. 6—11.

43. Meng F., Liang B., Wang M. Investigation of formation mechanism of Ti3SiC2 by self-propagating high-temperature synthesis. Int. J. Refract. Met. Hard Mater. 2013. Vol. 41. P. 152—161.

44. Davydov D.M., Amosov A.P., Latukhin E.I. Synthesis of MAX-phase of titanium silicon carbide (Ti3SiC2) as a promising electric contact material by SHS pressing method. Appl. Mech. Mater. 2015. Vol. 792. P. 596—601.

45. Shi X., Wang M., Zhai W., Xu Z., Zhang Q., Chen Y. Influence of Ti3SiC2 content on tribological properties of NiAl matrix self-lubricating composites. Mater. Design. 2013. Vol. 45. P. 179—189.

46. Rohatgi P.K., Tabandeh-Khorsid M., Omrani E. Chapter 8. Tribology of metal-matrix composites. In: Tribology for scientists and engineers: From basics to advanced concepts. Eds. P.L. Menezes et al. N.Y.: Springer Science + Business Media, 2013.

47. Levashov E., Kurbatkina V., Zaytsev A. Improved mechanical and tribological properties of metal-matrix composites dispersion-strengthened by nanoparticles. Materials. 2010. No. 3. P. 97—109.

48. Rapoport L., Leshchinsky V., Lvovsky I., Volovik Yu., Feld-man Y., Popovitz-Biro R., Tenne R. Superior tribological properties of powder materials with solid lubricant nano-particles. Wear. 2003. Vol. 255. No. 7—12. P. 794—800.

49. Pogozhev Yu.S., Potanin A.Yu., Levashov, E.A., Kochetov N.A., Kovalev D.Yu., Rogachev A.S. SHS of TiC—TiNi composites: Effect of initial temperature and nanosized refractory additives. Int. J. SHS. 2012. Vol. 21. No. 4. P. 202—211.

50. Amosov A.P., Fedotov A.F., Latukhin E.I., Novikov V.A. TiC—Al interpenetrating composites by SHS pressing. Int. J. SHS. 2015. Vol. 24. No. 4. P. 187—191.

51. Fedotov A.F., Amosov A.P., Latukhin E.I., Novikov V.A. Poluchenie alyumokeramicheskikh karkasnykh kompozitov na osnove MAX-fasy Ti2AlC metodom SVS-press-ovaniya [Production of aluminum-ceramic skeleton composites on the basis of the MAX-phase Ti2AlC by the method of SHS-compaction]. Izv. vuzov. Tsvet. metallurgi-ya. 2015. No. 6. P. 53—62.

52. Xue Q.J., La P.Q. Combustion synthesized bulk nano-crystalline materials and intermetallic matrix composites and their tribological properties. Chin. J. Nonferr. Met. 2004. Vol. 14. No. 1. P. 128—137.

53. La P.Q., Wang H.D., Bai Y.P., Yang Y., Wei Y.P., Lu X.F., Zhao Y., Cheng C.J. Microstructures and mechanical properties of bulk nanocrystalline Fe3Al materials with 5, 10, and 15 wt. % Cr prepared by aluminothermic reaction. Mater. Sci. Eng. A. 2011. Vol. 528. No. 21. P. 6489—6496.

54. Sanin V., Andreev D., Ikornikov D., Yukhvid V. Cast inter-metallic alloys and composites based on them by combined centrifugal casting — SHS process. Open J. Metal. 2013. No. 3. P. 12—24.

55. Nabavi A., Goroshin S., Frost G.L., Barthelat F. Mechanical properties of chromium-chromium sulfide cermets fabricated by self-propagating high-temperature synthesis. J. Mater. Sci. 2015. Vol. 50.P. 3434—3446.

56. Tomoshige R., Niitsu K., Sekiguchi T., Oikawa K., Ishida K. Some tribological properties of SHS-produced chromium sulfide. Int. J. SHS. 2009. Vol. 18. No. 4. P. 287—292.

57. Kalashnikov I.E., Bolotova L.K., Chernyshova T.A. Tribologicheskie kharakteristiki litykh alyumomatrichnykh kompozitov, modifitsirovannykh nanorazmernymi tugoplavkimi poroshkami [Tribological characteristics of cast aluminum-matrix composites, modified by nanosized refractory powders]. Rossiiskie nanotekhnologii. 2011. Vol. 6. No. 1—2. P. 144—153.

58. Amosov A.P., Nikitin V.I., Nikitin K.V., Ryazanov S.A., Ermoshkin A.A. Nauchno-tekhnicheskie osnovy prime-neniya protsessov SVS dlya sozdaniya litykh alyumomatrichnykh kompozitsionnykh splavov, diskretno armirovannykh nanorazmernymi keramicheskimi chastitsami [Scientific and technical basis for the use of SHS processes for creating cast aluminum matrix composite alloys, reinforced with discrete ceramic nanoparticles]. Naukoemkie tekhnologii v mashinostroenii. 2013. No. 8. P. 3—10.

59. Amosov A.P., Titova Yu.V., Maydan D.A., Ermoshkin A.A., Timoshkin I.Yu. Application of the nanopowder production of azide SHS technology for the reinforcement and modification of aluminum alloys. Rus. J. Non-Ferrous Met. 2015. Vol. 56. No. 2. P. 222—228.

60. Amosov A.P., Luts R.A., Latukhin E.I., Ermoshkin A.A. Application of SHS processes for in situ preparation of alumomatrix composite materials discretely reinforced by nanodimensional titanium carbide particles (review). Rus. J. Non-Ferr. Met. 2016. Vol. 57. No. 2. P. 106—112.

61. Shtansky D.V., Bondarev A.V., Kiryukhantsev-Korneev F.V., Levashov E.A. Nanokompozitsionnye antifriktsionnye pokrytiya dlya innovatsionnykh tribotekhnicheskikh system [Antifriction nanocomposite coatings for innovative tribological systems]. Metallovedenie i termicheskaya obrabotka metallov. 2015. No. 7. P. 77—84.

62. Sanin V.N., Ikornikov D.M., Andreev D.E., Yukhvid V.I., Derin B., Yücel O. Protective Mo2NiB2—Ni coatings by centrifugal metallothermic SHS. Int. J. SHS. 2015. Vol. 24. Iss. 3. P 161—170.

63. Gorshkov V.A., Kachin A.R., Yukhvid V.I. SVS-metallurgiya litogo kompozitsionnogo materiala Cr3C2—NiAl i zashchitnye pokrytiya na ego osnove [SHS-metallurgy of cast composite material Cr3C2—NiAl and protective coatings based on it]. Perspektivnye materialy. 2014. No. 10. P. 60—67.

64. Bazhin P.M., Stolin A.M., Alymov M.I., Chizhikov A.P. Osobennosti polucheniya dlinnomernykh izdelii iz keramicheskogo materiala s nanorazmernoi strukturoi metodom SVS-ekstruzii [Peculiarities of obtaining long products of ceramic material with a nanosize structure by the method of SHS-extrusion]. Perspektivnye materialy. 2014. No. 11. P. 73—81.

65. Stolin A.M., Bazhin P.M., Mikheev M.V., Averichev O.A., Saguidollayev A.S., Kylyshbaev K.T. Deposition of protective coatings by electric arc cladding with SHS electrodes. Weld. Int. 2015. Vol. 29. No. 8. P. 657—660.

66. Stepanova I.V., Panin S.V., Durakov V.G., Korchagin M.A. Modifikatsiya struktury poroshkovykh pokrytii na nikelevoi i khromonikelevoi osnovakh vvedeniem nanochastits diborida titana pri elektronno-luchevoi naplavke [Modification of the structure of powder coatings on nickel and chromium-nickel bases by introducing nano-particles of titanium diboride during electron-beam surfacing]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2011. No. 1. P. 68—74.

67. Makhlouf A.S.H. Current and advanced coating technologies for industrial applications. In: Nanocoatings and ultra-thin films: Technologies and applications. Eds. A.S.H. Makhlouf, I. Tiginyanu. Cambridge: Woodhead Publishing Limited, 2011. P. 3—23.

68. Kalita V.I., Komlev D.I. Plazmennye pokrytiya s nanokristallicheskoi i amorfnoi strukturoi [Plasma coatings with nanocrystalline and amorphous structure]. Moscow: Lider M, 2008.

69. Pawlowski L. Finely grained nanometric and submicro-metric coatings by thermal spraying: a review. Surf. Coat. Technol. 2008. Vol. 202. P. 4318—4328.

70. Lomovsky O.I., Dudina D.V., Ulianitsky V.Yu., Zlobin S.B., Kosarev V.F., Klinkov S.V., Korchagin M.A., Know D.-H., Kim J.-S., Know Y.-S. Cold and detonation spraying of TiB2—Cu nanocomposites. Mater. Sci. Forum. 2007. Vol. 534—536. P. 1371—1376.

71. Levashov E.A., Pogozhev Yu.S., Kudryashov A.E., Senatulin B.R., Moore J.J. Studying the effect of various nature zirconia nanocrystalline powder additions on composition and physical-chemical properties of SHIM-3B hard alloy. Phys. Metals Metallogr. 2003. Vol. 96. No. 2. P. 1—7.

72. Levashov E.A., Pogozhev Yu.S., Kudryashov A.E., Rupasov S.I., Levina V.V. Dispersno-uprochnennye nanochastitsami kompozitsionnye materialy na osnove TiC—Ni dlya elektroiskrovogo legirovaniya [Nanoparticles dispersion-strengthened composite materials based on TiC–Ni for the spark alloying]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2008. No. 2. P. 17—24.

73. Kudryashov A.E., Levashov E.A., Vetrov N.V., Shalkevich A.B., Ivanov E.V., Solntseva I.S. Novyi klass elektroiskrovykh pokrytii dlya izdelii iz titanovykh splavov, rabotayushchikh v ekstremal’nykh usloviyakh ekspluatatsii [New class of electric-spark coatings for products made of titanium alloys, working in extreme conditions]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2008. No. 3. P. 34—45.

74. Levashov E.A., Kudryashov A.E., Doronin O.N., Krakht V.B. On the application of SHS-electrode materials for the electrospark hardening of rolls for hot rolling mill. Rus. J. Non-Ferr. Met. 2014. Vol. 55. No. 4. P. 394—402.

75. Manakova O.S., Kudryashov A.E., Levashov E.A. On the application of dispersion hardened SHS electrode materials based on (Ti, Zr)C carbide using electrospark deposition. Surf. Eng. Appl. Electrochem. 2015. Vol. 51. No. 5. P. 413—421.

76. Panteleenko F.I., Sarantsev V.V., Stolin A.M., Bazhin P.M., Azarenko E.L. Sozdanie kompozitsionnykh pokrytii na osnove karbida titana elektroiskrovym legirovaniem [The creation of composite coatings based on titanium carbide by electric spark alloying]. Elektronnaya obrabotka mate-rialov. 2011. Vol. 47. No. 4. P. 106—115.

77. Levashov E.A., Shtansky D.V. Mnogofunktsional’nye nanostrukturirovannye plenki [Multifunctional nanostructured films]. Uspekhi khimii. 2007. Vol. 76. No. 5. P. 501—509.

78. Kiryukhantsev-Korneev F.V., Sheveiko A.N., Komarov V.A., Blanter M.S., Skryleva E.A., Shirmanov N.A., Levashov E.A., Shtansky D.V. Nanostructured Ti—Cr—B—N and Ti—Cr—Si—C—N coatings for hard-alloys cutting tools. Rus. J. Non-Ferr. Met. 2011. Vol. 52. No. 3. P. 311—318.

79. Fedotov A.F., Amosov A.P., Ermoshkin A.A., Lavro V.N., Altukhov S.I., Latukhin E.I., Davydov D.M. Composition, structure and properties of SHS-compacted cathodes of the Ti—C—Al—Si system and vacuum-arc coatings obtained from them. Rus. J. Non-Ferr. Met. 2014. Vol. 55. No. 5. P. 477—484.

80. Walsh F.C., Ponce de Leon C. A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology. Trans. Inst. Mater. Finish. 2014. Vol. 92. No. 2. P. 83—98.

81. Ahmad Y.H., Mohamed A.M.A. Electrodeposition of nano-structured nickel-ceramic composite coatings: А review. Int. J. Electrochem. Sci. 2014. Vol. 9. P. 1492—1963.

82. Sudagar J., Lian J., Sha W. Electroless nickel, alloy, composite and nanocoatings: А critical review. J. Alloys Compd. 2013. Vol. 571. P. 183—204.

83. Narayanan T.S.N.S., Seshadri S.K., II Park S., Lee M.H. Electroless nanocomposite coatings: synthesis, characteristics, and applications. In: Handbook of Nanoelectro-chemistry: Electrochemical synthesis methods, properties and characterization techniques. Eds. M. Aliofkhazraei, A.S.H. Makhlouf. Springer Intern. Publ., 2015. P. 1—23.

84. Borodin I.M. Poroshkovaya gal’vanotekhnika [Powder electroplating]. Moscow: Mashinostroenie, 1990.

85. Ashby M.F. Chapter 4. Material property charts. In: Materials selection in mechanical design. Ed. M.F. Ashby. 4-th ed. Oxford: Butterworth-Heinemann, 2011. P. 57—96.


Review

For citations:


Amosov A.P. NANOMATERIALS OF SHS TECHNOLOGY FOR TRIBOLOGICAL APPLICATIONS: А REVIEW. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(4):17-33. (In Russ.) https://doi.org/10.17073/1997-308X-2016-4-17-33

Views: 1542


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)