Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

SYSTEMS AND THE PROSPECTS FOR CREATING COMPOSITE CERAMIC MATERIALS BASED ON THEM

https://doi.org/10.17073/1997-308X-2016-4-41-50

Abstract

Based on the model of regular solutions and experimental data on quasi-binary sections and individual substances, the liquidus surfaces of SiC–B4C–MedB2 quasi-ternary eutectic systems (where boride MedB2 – CrB2, VB2, NbB2, TaB2, TiB2, ZrB2, HfB2, W2B5) are built. The paper provides the comparison of theoretical calculations with experimental data and reviews regularities of SiC–B4C–MedB2 phase diagrams. It is found that there is a regular decrease in diboride concentration in the ternary eutectics with the increase in its melting point. Correlations are established between the eutectic temperature and MedB2 melting point tэвт = f(tпл MedB2), the eutectic temperature and MedB2 formation enthalpy : tэвт = f(ΔHf MedB2). The type of correlations is close to similar correlations observed earlier in SiC–MedB2 and B4C–MedB2 boundary quasi-binary systems. The structure and parameter analysis of the reviewed systems allows for the conclusion on the prospects of developing a wide range of engineering and functional ceramic materials and coatings based on these systems and obtained by pressureless sintering, as well as heating and consolidation pulse methods.

About the Authors

S. S. Ordan'yan
St. Petersburg State Technological Institute (technical university) (SPSTI)
Russian Federation
Dr. Sci. (Tech.), prof., Department of chemical technology of high-melting non-metallic and silicate materials (CTHN&SM)


D. D. Nesmelov
St. Petersburg State Technological Institute (technical university) (SPSTI)
Russian Federation
Cand. Sci. (Tech.), senior lecturer, Department of CTHN&SM


D. P. Danilovich
St. Petersburg State Technological Institute (technical university) (SPSTI)
Russian Federation
senior lecturer, Department of CTHN&SM


Yu. P. Udalov
St. Petersburg State Technological Institute (technical university) (SPSTI)
Russian Federation
Dr. Sci. (Chem.), prof., Department of general chemical technology and catalysis


References

1. Thevenot F. Boron carbide — a comprehensive review. J. Eur. Ceram. Soc. 1990. Vol. 6. No. 4. P. 205—225.

2. Seifert H.J., Aldinger F. Phase equilibria in the Si—B— C—N system. In: High performance non-oxide ceramics I. Berlin Heidelberg: Springer, 2002. P. 1—58.

3. Andrievski R.A. Micro- and nanosized boron carbide: synthesis, structure and properties. Rus. Chem. Rev. 2012. Vol. 81. No. 6. P. 549—559.

4. Ordanyan S.S., Unrod V.I. Eutectics and their models, sintered composites, in systems of refractory materials. Refract. Ind. Ceram. 2005. Vol. 46. No. 4. P. 276—281.

5. Ordanyan S.S., Vikhman S.V., Nesmelov D.D., Danilovich D.P., Panteleev I.B. Nonoxide high-melting point compounds as materials for extreme conditions. Adv. Sci. Technol. 2014. Vol. 89. P. 47—56.

6. Sciti D., Silvestroni L., Medri V., Monteverde F. Sintering and densification mechanisms of ultra-high temperature ceramics. In: Ultra-high temperature ceramics: Materials for extreme environment applications. 2014. P. 112—143.

7. Van Dijen F.K., Mayer E. Liquid phase sintering of silicon carbide. J. Eur. Ceram. Soc. 1996. Vol. 16. No. 4. P. 413— 420.

8. Can A., Herrmann M., McLachlan D.S., Sigalas I., Adler J. Densification of liquid phase sintered silicon carbide. J. Eur. Ceram. Soc. 2006. Vol. 26. No. 9. P. 1707—1713.

9. Gomez E., Echeberria J., Iturriza I., Castro F. Liquid phase sintering of SiC with additions of Y<sub>2</sub>O<sub>3</sub>, Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>. J. Eur. Ceram. Soc. 2004. Vol. 24. No. 9. P. 2895—2903.

10. Roy T.K., Subramanian C., Suri A.K. Pressureless sintering of boron carbide. Ceram. Int. 2006. Vol. 32. No. 3. P. 227— 233.

11. Kim H.W., Koh Y.H., Kim H.E. Densification and mechanical properties of B<sub>4</sub>C with Al<sub>2</sub>O<sub>3</sub> as a sintering aid. J. Amer. Ceram. Soc. 2000. Vol. 83. No. 11. P. 2863—2865.

12. Dariel M.P., Frage N. Reaction bonded boron carbide: recent developments. Adv. Appl. Ceram. 2012. Vol. 111. No. 5—6. P. 301—310.

13. Golubeva N.A., Plyasunkova L.A., Kelina I.Y., Antonova E.S., Zhuravlev A.A. Study of reaction-bonded boron carbide properties. Refr. Ind. Ceram. 2015. Vol. 55. No. 5. P. 414—418.

14. Rehman S.S., Ji W., Khan S.A., Fu Z., Zhang F. Micro-structure and mechanical properties of B<sub>4</sub>C densified by spark plasma sintering with Si as a sintering aid. Ceram. Int. 2015. Vol. 41. No. 1. P. 1903—1906.

15. Kumazawa T., Honda T., Zhou Y., Miyazaki H., Hyuga H., Yoshizawa Y.I. Pressureless sintering of boron carbide ceramics. J. Ceram. Soc. Jap. 2008. Vol. 116. No. 1360. С. 1319—1321.

16. Rao S.R., Padmanabhan G., Rao P.V.C.S. Fabrication and tribological properties of Al—Si/B<sub>4</sub>C metal matrix composites. Int. J. Surface Eng. Interdiscipl. Mater. Sci. 2014. Vol. 2. No. 1. P. 74—84.

17. Landingham R.L. Cermets from molten metal infiltration processing: Pat. 8530363 (USA). 2013.

18. Luo Z., Song Y., Zhang S., Miller D.J. Interfacial micro-structure in a B<sub>4</sub>C/Al composite fabricated by pressureless infiltration. Metal. Mater. Trans. A. 2012. Vol. 43. No. 1. P. 281—293.

19. Schwetz K.A., Grellner W. The influence of carbon on the microstructure and mechanical properties of sintered boron carbide. J. Less-Common Met. 1981. Vol. 82. P. 37—47.

20. Suzuki H., Hase T., Maruyama T. Effect of carbon on sintering of boron carbide. J. Ceram. Soc. Jap. 1979. Vol. 87 (1008). P. 430—433.

21. Champagne B., Angers R. Mechanical properties of hot-pressed B—B<sub>4</sub>C materials. J. Amer. Ceram. Soc. 1979. Vol. 62. No. 3—4. P. 149—153.

22. Munhollon T., Kuwelkar K., Haber R. Processing of boron rich boron carbide by boron doping. In: Advances in Ceramic Armor X: A collection of papers presented at the 38th Intern. Conf. on advanced ceramics and composites (27—31 Jan. 2014). John Wiley & Sons, Inc., 2015. P. 119—127.

23. Lee H., Speyer R.F. Pressureless sintering of boron carbide. J. Amer. Ceram. Soc. 2003. Vol. 86. No. 9. P. 1468—1473.

24. Weaver G.Q. Sintered high density boron carbide: Pat. 4320204 (USA). 1982.

25. Yamada S., Hirao K., Yamauchi Y., Kanzaki S. Sintering behavior of B4C—CrB2 ceramics. J. Mater. Sci. Lett. 2002. Vol. 21. No. 18. P. 1445—1447.

26. Yamada S., Hirao K., Yamauchi Y., Kanzaki S. Densification behaviour and mechanical properties of pressureless-sintered B<sub>4</sub>C—CrB<sub>2</sub> ceramics. J. Mater. Sci. 2002. Vol. 37. No. 23. P. 5007—5012.

27. Yamada S., Hirao K., Yamauchi Y., Kanzaki S. B4C—CrB2 composites with improved mechanical properties. J. Eur. Ceram. Soc. 2003. Vol. 23. No. 3. P. 561—565.

28. Li X., Jiang D., Zhang J., Lin Q., Chen Z., Huang Z. Pressureless sintering of boron carbide with Cr<sub>3</sub>C<sub>2</sub> as sintering additive. J. Eur. Ceram. Soc. 2014. Vol. 34. No. 5. P. 1073—1081.

29. Demirskyi D., Sakka Y. In situ fabrication of B<sub>4</sub>C—NbB<sub>2</sub> eutectic composites by spark—plasma sintering. J. Amer. Ceram. Soc. 2014. Vol. 97. No. 8. P. 2376—2378.

30. Demirskyi D., Sakka Y. Fabrication, microstructure and properties of in situ synthesized B<sub>4</sub>C—NbB<sub>2</sub> eutectic composites by spark plasma sintering. J. Ceram. Soc. Jap. 2015. Vol. 123. No. 1433. P. 33—37.

31. Ordan’yan S.S. O zakonomernostyakh vzaimodeistviya v sistemakh B<sub>4</sub>C—MeIV-VIB<sub>2</sub> [Specific interactions in B4C—MeIV-VIB2 systems]. Neorganicheskie materialy. 1993. Vol. 5. P. 15—17.

32. Ordan’yan S.S. Zakonomernosti vzaimodeistviya v sistemakh SiC—MeIV-VIB<sub>2</sub> [Specific interactions in SiC—MeIV-VIB<sub>2</sub> systems]. Zhurnal prikladnoi khimii. 1993. Vol. 66. No. 11. P. 2439—2444.

33. Ordan’yan S.S., Vikhman S.V., Kuznetsov M.N. Stroenie politermicheskogo razreza SiC—W<sub>2</sub>B<sub>5</sub> sistemy B—C—Si—W [Structure of the polythermal SiC—W<sub>2</sub>B<sub>5</sub> section of the B—C—Si—W system]. Ogneupory i tekhnicheskaya keramika. 2004. Vol. 12. P. 2—4.

34. Udalov Yu.P., Valova E.E., Ordan’yan S.S. Preparation and abrasive properties of eutectic compositions in the system B4C—SiC—TiB<sub>2</sub>. Refractories. 1995. Vol. 36. No. 8. P. 233—234.

35. Li W.J., Tu R., Goto T. Preparation of directionally solidified B<sub>4</sub>C—TiB<sub>2</sub>—SiC ternary eutectic composites by a floating zone method and their properties. Mater. Trans. 2005. Vol. 46. No. 9. P. 2067—2072.

36. Grigor’ev O.N., Gogotsi G.A., Gogotsi Y.G., Subbotin V.I., Brodnikovskii N.P. Synthesis and properties of ceramics in the SiC—B<sub>4</sub>C—MeB<sub>2</sub> system. Powder Metall. Metal Ceramics. 2000. Vol. 39. No. 5—6. P. 239—250.

37. Bogomol Yu.I., Loboda P.I., Holovenko Ya.B. Struktura ta vlastivostі kvazіpotrіinih spryamovano armovanikh kompozitіv sistemi B<sub>4</sub>C—TiB<sub>2</sub>—SiC [Structure and properties of quasi-ternary directionally reinforced composites of B<sub>4</sub>C—TiB<sub>2</sub>—SiC system]. Metaloznavstvo ta obrobka metaliv. 2015. Vol. 2. P. 37—42.

38. Chalgin A.V., Vikhman S.V., Ordan’yan S.S., Danilovich D.P., Nechaeva M.V. Principles of technology and mechanical properties of structural ceramics based on the ternary system SiC—B<sub>4</sub>C—CrB<sub>2</sub>. In: MRS Proceedings. Cambridge University Press. 2015. Vol. 1765. imrc2014 s4a-o015.

39. Tu R., Li N., Li Q., Zhang S., Zhang L., Goto T. Microstructure and mechanical properties of B4C—HfB<sub>2</sub>—SiC ternary eutectic composites prepared by arc melting. J. Eur. Ceram. Soc. 2016. Vol. 36. No. 4. P. 959—966.

40. Tu R., Li N., Li Q.Z., Zhang S., Goto T., Zhang L.M. Preparation of B4C—ZrB<sub>2</sub>—SiC ternary eutectic composites by arc melting and their properties. Mater. Res. Innov. 2015. Vol. 19. Supl. 10. P. S10-26—S10-29.

41. Fahrenholtz W.G., Neuman E.W., Brown-Shaklee H.J., Hilmas G.E. Superhard boride—carbide particulate composites. J. Amer. Ceram. Soc. 2010. Vol. 93. No. 11. P. 3580—3583.

42. Udalov Y., Morozov Y. The program of calculation of fusibility curves of triple systems DIATRIS 1.2 (Algorithm, interface, and technical application). In: 6th Intern. School-Conf. «Phase diagrams in materials science». 2001. P. 58—59.

43. Ordan’yan S.S., Gudovskikh P.S. Evolyutsiya struktury volokon iz evtektiki Al<sub>2</sub>O<sub>3</sub>—ZrO<sub>2</sub> (Y<sub>2</sub>O<sub>3</sub>) [Evolution of Al<sub>2</sub>O<sub>3</sub>—ZrO<sub>2</sub> (Y<sub>2</sub>O<sub>3</sub>) eutectic fibers structure]. Zhurnal prikladnoi khimii. 1995. Vol. 68. No.12. P. 1955—1959.

44. Ordan’yan S.S., Gudovskikh P.S., Pigunova D.N. Ceramics based on cubic ZrO<sub>2</sub> (Y<sub>2</sub>O<sub>3</sub>) with addition of a fused Al<sub>2</sub>O<sub>3</sub>—ZrO<sub>2</sub> (Y<sub>2</sub>O<sub>3</sub>) eutectic. Refract. Ind. Ceram. 2004. Vol. 45. No. 1. P. 1—2.

45. Zhidkova T.V., Danilovich D.P., Ordanyan S.S. Joint synthesis of heterogeneous powders in the B4C—SiC—TiB<sub>2</sub> system. In: Book of abstracts of the 14th Intern. conf. of European Ceramic Society (21—25 June 2015). Toledo. ID: 01800.

46. Zhidkova T.V., Danilovich D.P., Ordan’yan S.S. Osobennosti sovmestnogo karbotermicheskogo sinteza poroshkov v sis-teme SiC—B<sub>4</sub>C—TiB<sub>2</sub> [Features joint synthesis of powders in the system SiC—B<sub>4</sub>C—TiB<sub>2</sub>] In: Vtoraya Vserossiiskaya konferentsiya «Innovatsii v materialovedenii» [The second conf. «Innovations in materials science»] (1—4 June 2015). Moscow, 2015. P. 293—294.


Review

For citations:


Ordan'yan S.S., Nesmelov D.D., Danilovich D.P., Udalov Yu.P. SYSTEMS AND THE PROSPECTS FOR CREATING COMPOSITE CERAMIC MATERIALS BASED ON THEM. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(4):41-50. (In Russ.) https://doi.org/10.17073/1997-308X-2016-4-41-50

Views: 1051


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)