EXPERIMENTAL STUDIES AND THERMODYNAMIC CALCULATIONS OF STRUCTURAL AND PHASE COMPOSITION FOR Ti–Si–C SYSTEM AT HEAT TREATMENT
https://doi.org/10.17073/1997-308X-2016-4-51-59
Abstract
Thermodynamic calculations of structural and phase balance in the Ti–Si–C system at 1100–1400 °C was made using the CALPHAD method. The paper demonstrates the calculated phase diagrams of this system. It is found that 100 % of the Ti3SiC2 phase is formed at the stoichiometric relationship of components. Deviations in the carbon or silicon content lead to the formation of titanium carbide, titanium disilicide, or silicon carbide in the system. The phase composition is virtually not affected by the temperature in the examined temperature range. The paper provides comparison of the calculated data with the experimentally determined phase composition of the said system samples after the spark plasma sintering of the mechanoactivated powder. In practice, the process temperature and the duration of high-temperature soak significantly affect the phase composition of the final product due to the limited speed of solid phase reactions during the synthesis of compounds. The resulting samples have a grain size of 1–5 μm and hardness of 4–15 GPa depending on the phase composition.
About the Authors
V. V. PopovRussian Federation
Dr. Sci. (Tech.), prof., head of the laboratory of diffusion
I. I. Gorbachev
Russian Federation
Cand. Sci. (Phys.-Math.), senior research associate
A. Yu. Pasynkov
Russian Federation
junior researcher
M. N. Kachenyuk
Russian Federation
Cand. Sci. (Tech.), associate prof., Department of materials, technology and gesign of machines
O. V. Somov
Russian Federation
Cand. Sci. (Tech.), senior researcher, Centre of powder material science
References
1. Barsoum M.W. The MN+1AXN: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem. 2000. Vol. 28. P. 201—281.
2. Sarkar D., Kumar B.V. Manoj, BasuSarkar B. Understanding the fretting wear of Ti3SiC2. J. Eur. Ceram. Soc. 2006. Vol. 26. No. 13. P. 2441—2452.
3. Barsoum M.W., Barsoum T. El-Raghy, synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 1996. Vol. 79. No. 7. P. 1953—1956.
4. Barsoum M.W., El-Raghy T., Rawn C.J. Thermal properties of Ti3SiC2. J. Phys. Chem. Solids. 1999. Vol. 60. No. 4. P. 429—439.
5. Barsoum M.W., Brodkin D., El-Raghy T. Formation and thermal stability of amorphous Ti—Si—C alloys. Scr. Mater. 1997. Vol. 3. No. 5. P. 535—541.
6. Popov V.V., Gorbachev I.I. Analiz rastvorimosti karbidov, nitridov i karbonitridov v stalyakh metodami komp’yuternoi termodinamiki. I. Opisanie termodinamicheskikh svoistv. Metod rascheta [The analysis of solubility of carbides, nitrides and carbonitrides in steel by methods of computer thermodynamics. I. Description of thermodynamic properties. Computational method]. Fizika metallov i metallovedenie. 2004. Vol. 98. No. 4. P. 11—21.
7. Saunders N., Miodownik A.D. Calphad: Calculation of phase diagrams, a comprehensive guide (Pergamon Materials Series). Vol. 1. Ed. R.W. Cahn. Oxford: Pergamon, 1998.
8. Sandman B., Agren J. A regular solution model for phase with several components and sublattices, suitable for computer applications. J. Phys. Chem. Solids. 1981. Vol. 42. No. 4. P. 297—301.
9. Hillert M., Staffonsson L.-I. The regular solution model for stoichiometric phases and ionic melts. Acta Chem. Scand. 1970. Vol. 24. No. 10. P. 3618—3626.
10. Harvig H. An extended version of the regular solution model for stoichiometric phases and ionic melts. Acta Chem. Scand. 1971. Vol. 25. No. 9. P. 3199—3204.
11. Dumitrescu L.F.S., Hillert M., Sundman B. A Reassessment of Ti—C—N based on a critical-review of available assessments of Ti—N and Ti—C. Z. Metallkd. 1999. Bd. 90. S. 534—541.
12. Gröbner J., Lukas H. L., Aldinger F. Thermodynamic calculation of the ternary system Al—Si—C. CALPHAD. 1996. Vol. 20. No. 2. P. 247—254.
13. Dinsdale A.T. SGTE data for pure elements. CALPHAD. 1991. Vol. 15. No. 4. P. 317—425.
14. Seifert H.J., Lukas H.L., Petzow G. Thermodynamic optimization of the Ti—Si system. Z. Metallkd. 1996. Bd. 87. No. 1. S. 2—13.
15. Du Y., Schuster J.C. Experimental and thermodynamic investigations in the Ti—Si—C system. Ber. Bunsen-Ges. Phys. Chem. 1998. Bd. 102. No. 9. S. 1185—1188.
16. Du Y., Schuster J.C., Seifert H.J., Aldinger F. Experimental investigation and thermodynamic calculation of the titanium—silicon—carbon system. J. Am. Ceram. Soc. 2000. Vol. 83. No. 1. P. 197—203.
Review
For citations:
Popov V.V., Gorbachev I.I., Pasynkov A.Yu., Kachenyuk M.N., Somov O.V. EXPERIMENTAL STUDIES AND THERMODYNAMIC CALCULATIONS OF STRUCTURAL AND PHASE COMPOSITION FOR Ti–Si–C SYSTEM AT HEAT TREATMENT. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(4):51-59. (In Russ.) https://doi.org/10.17073/1997-308X-2016-4-51-59