Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

INVESTIGATION OF FORMATION OF STRUCTURE AND PROPERTIES IN Cu– Ti3SiC2 SYSTEM

https://doi.org/10.17073/1997-308X-2016-4-60-67

Abstract

The study covers the formation of structure and properties during infiltration, pressureless and spark plasma sintering in Cu – (12,5÷37,5 vol.%) Ti3SiC2 powder materials using electron microscopy, X-ray phase and energy dispersive analysis methods. The paper determines the independence of composite material (CM) phase composition from the sintering method and the temperature within 900–1200 °C. Special aspects of CM structure formation during sintering include deintercalation of silicon from titanium carbosilicide, formation of a solid carbon solution based on titanium silicide Ti5Si3(С), small amounts of titanium carbide, silicon carbide and silicide TiSi2. The increased concentration of Ti3SiC2 in CM leads to a certain decrease in electrical conductivity, but also to a significant increase in hardness, strength and wear resistance of the electroerosion electrode composites for EDM.

About the Authors

S. A. Oglezneva
Perm National Research Polytechnic University
Russian Federation
Dr. Sci. (Tech.), prof., Department of materials, technology and design of machines, Perm National Research Polytechnic University, scientific head of the Centre of powder material science


M. N. Kachenyuk
Perm National Research Polytechnic University
Russian Federation
Cand. Sci. (Tech.), associate prof., Department of materials, technology and design of machines


N. D. Ogleznev
Perm National Research Polytechnic University
Russian Federation
Cand. Sci. (Tech.), senior lecturer, Department of materials, technology and design of machines


References

1. Елисеев Ю.С., Саушкин Б.П. Электроэрозионная обработка изделий авиационно-космической техники. М.: Изд-во МГТУ им Н.Э. Баумана, 2010.

2. Серебреницкий П.П. Современные электроэрозионные технологии и оборудование: Учеб. пос. СПб.: Балт. гос. техн. ун-т, 2007.

3. Czelusniak T., Amorim F.L., Higa C.F., Lohrengel A. Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering // Int. J. Adv. Manuf. Technol. 2014. Vol. 72. P. 1503—1512.

4. Лепакова О.К., Голобоков Н.Н., Китлер В.Д., Шульпеков А.М., Максимов Ю.М. Электропроводящий композиционный материал, шихта для его получения и электропроводящая композиция: Пат. 2341839 (РФ). 2008.

5. Barsoum W. The Mn + iAXn: A new class of solids; Thermodynamically stable nanolaminates // Prog. Solid State Chem. 2000. Vol. 28. P. 201—281.

6. Kisi E.H., Crossley A.A. Structure and crystal chemistry of Ti<sub>3</sub>SiC<sub>2</sub> // J. Phys. Chem. Solids. 1998. Vol. 59. No. 9. P. 1437—1443.

7. Tungwai L. Ngai, Wei Zheng, Yuanyuan Li. Effect of sin-tering temperature on the preparation of Cu—Ti<sub>3</sub>SiC<sub>2</sub> metal matrix composite // Prog. Natur. Sci.: Mater. Int. 2013. Vol. 23(1). P. 70—76.

8. Nickl J.J., Schweitzer К.К., Luxenberg P. Gasphasenabscheidung im systeme Ti—C—Si // J. Les. Common. Metals. 1972. Vol. 26. P. 382—389.

9. International Center for Diffraction Data. PDF-2. The Powder diffraction files. 2001. Lic. No. 81200030.

10. Ida Kero. Ti<sub>3</sub>SiC<sub>2</sub>. Synthesis by powder metallurgical methods // Licentiate Thesis. Luleå, Sweden: Luleå Univ. of Technology. 2007. No. 34. P. 74.

11. Yanchun Zhou, Wanli Gu. Chemical reaction and stability of Ti3SiC2 in Cu during high-temperature processing of Cu/Ti<sub>3</sub>SiC<sub>2</sub> composites // Z. Metallkd. 2004. Vol. 95. No. 1. P. 50—56.

12. Tungwai L. Ngai, Wei Zheng, Yuanyuan Li. Effect of sin-tering temperature on the preparation of Cu—Ti<sub>3</sub>SiC<sub>2</sub> metal matrix composite // Prog. Natur. Sci.: Mater. Int. 2013. Vol. 23(1). P. 70—76.

13. Шухардин С.В. Двойные и многокомпонентные системы меди. М.: Наука, 1979.

14. Надуткин А.В. Изучение процессов синтеза Ti<sub>3</sub>SiC<sub>2</sub> и формирования конструкционной керамики на его основе: Дис. ... канд. техн. наук. Сыктывкар: Ин-т химии Коми НЦ УрО РАН, 2007.

15. Косолапова Т.Я. Карбиды. М.: Металлургия, 1968.

16. Eliseev Yu.S., Saushkin B.P. Elektroerozionnaya obrabotka izdelii aviatsionno-kosmicheskoi tekhniki [Electrical discharge machining manufacturing aerospace equipment]. Moscow: MGTU n.a. N.E. Bauman, 2010.

17. Serebrenitskii P.P. Sovremennye elektroerozionnye tekhnologii i oborudovanie [Modern electro-technology and equipment]. Saint-Petersburg: Balt. State Tekhn. Univ., 2007.

18. Czelusniak T., Amorim F.L., Higa C.F., Lohrengel A. Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering. Int. J. Adv. Manuf. Technol. 2014. Vol. 72. P. 1503—1512.

19. Lepakova O.K., Golobokov N.N., Kitler V.D., Shul’pekov A.M., Maksimov Yu.M. Elektroprovodyashchii kompozitsionnyi material, shikhta dlya ego polucheniya i elektroprovodyashchaya kompozitsiya [The electrically conductive composite material, charge for its production and the electrically conductive composition]: Pat. 2341839 (RF). 2008.

20. Barsoum W. The Mn + iAXn: A new class of solids; Thermodynamically stable nanolaminates. Prog. Solid State Chem. 2000. Vol. 28. P. 201—281.

21. Kisi E.H., Crossley A.A. Structure and crystal chemistry of Ti<sub>3</sub>SiC<sub>2</sub>. J. Phys. Chem. Solids. 1998. Vol. 59. No. 9. P. 1437—1443.

22. Tungwai L. Ngai, Wei Zheng, Yuanyuan Li. Effect of sintering temperature on the preparation of Cu— Ti<sub>3</sub>SiC<sub>2</sub> metal matrix composite. Prog. Natur. Sci.: Mater. Int. 2013. Vol. 23(1). P. 70—76.

23. Nickl J.J., Schweitzer К.К., Luxenberg P. Gasphasenabscheidung im systeme Ti—C—Si. J. Les. Common. Metals. 1972. Vol. 26. P. 382—389.

24. International Center for Diffraction Data. PDF-2. The Powder diffraction files. 2001. Lic. No. 81200030.

25. Ida Kero. Ti<sub>3</sub>SiC<sub>2</sub>. Synthesis by powder metallurgical methods. In: Licentiate Thesis. Luleå, Sweden: Luleå Univ. of Technology. 2007. No. 34. P. 74.

26. Yanchun Zhou, Wanli Gu. Chemical reaction and stability of Ti<sub>3</sub>SiC<sub>2</sub> in Cu during high-temperature processing of Cu/ Ti<sub>3</sub>SiC<sub>2</sub> composites. Z. Metallkd. 2004. Vol. 95. No. 1. P. 50—56.

27. Tungwai L. Ngai , Wei Zheng, Yuanyuan Li. Effect of sin-tering temperature on the preparation of Cu— Ti<sub>3</sub>SiC<sub>2</sub> metal matrix composite. Prog. Natur. Sci.: Mater. Int. 2013. Vol. 23(1). P. 70—76.

28. Shukhardin S.V. Dvoinye i mnogokomponentnye siste-my medi [Binary and multicomponent systems copper]. Moscow: Nauka, 1979.

29. Nadutkin A.V. Izuchenie protsessov sinteza Ti<sub>3</sub>SiC<sub>2</sub> i for-mirovaniya konstruktsionnoi keramiki na ego osnove [The study of the processes of synthesis and the formation Ti3SiC2 structural ceramics based on it]: Dissertation of PhD. Syktyvkar: Institute of chem., Komi Sci. Center, Ural branch of RAS, 2007.

30. Kosolapova T.Ya. Karbidy [Carbides]. Moscow: Metallurgiya, 1968.


Review

For citations:


Oglezneva S.A., Kachenyuk M.N., Ogleznev N.D. INVESTIGATION OF FORMATION OF STRUCTURE AND PROPERTIES IN Cu– Ti3SiC2 SYSTEM. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(4):60-67. (In Russ.) https://doi.org/10.17073/1997-308X-2016-4-60-67

Views: 926


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)