Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

COMPOSITION AND STRUCTURE OF THE SURFACE OF HIGHLY POROUS MATERIALS BASED ON ZIRCONIA STABILIZED WITH YTTRIA

https://doi.org/10.17073/1997-308X-2016-4-68-75

Abstract

Highly porous permeable materials were obtained from zirconia nanopowders stabilized with 2, 3 and 7 mol.% of yttria by duplicating the polymer matrix. It was found that samples feature a complex surface relief formed by sintered powder agglomerates obtained as a result of sintering treatment. Raman spectroscopy showed that the phase composition of material surfaces is identical to the phase composition of initial nanopowders and was only presented by the tetragonal modification in all the reviewed cases. The study demonstrated that the application of nickel (active catalytic component) from nickel nitrate solutions or by metallic nickel deposition on the surface of ZrO2 stabilized with 3 mol.% of Y2O3 led to a monoclinic modification. Only tetragonal modification was identified on the surface of highly porous ZrO2 samples stabilized with 2 and 7 mol.% of Y2O3. The peak decomposition procedure recorded a shift in the integrated intensity of peaks towards the lines typical for monoclinic modification.

About the Authors

S. E. Porozova
PNRPU
Russian Federation
Dr. Sci. (Tech.), prof., Department of materials, technology and design of machines, Perm National Research Polytechnic University (PNRPU), senior researcher of the Centre of powder material science of PNRPU


A. A. Smetkin
PNRPU
Russian Federation
Cand. Sci. (Tech.), associate prof., Department of materials, technology and design of machines, PNRPU, senior researcher of the Centre of powder material science of PNRPU


I. V. Solnyshkov
PNRPU
Russian Federation
postgraduate student, Department of materials, technology and design of machines, PNRPU, senior researcher of the Centre of powder material science of PNRPU


References

1. Studart André R., Gonzenbach Urs T., Tervoort Elena, Gauckler Ludwig J. Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 2006. Vol. 89. No. 6. DOI: 10.1111/j.1551-2916.2006.01044.x.

2. Poyasnitel’naya zapiska k dorozhnoi karte «Nanotekhnologii i nanomaterialy dlya razvitiya atomnogo energopromyshlennogo kompleksa» [Explanatory note to the road map «Annan’s Nanotechnology and-rials for nuclear energy development»]. URL: http://www.rusnano.com/ investment/roadmap/atom (accessed: 30.07.2015).

3. Sufizar Ahmad, Marziana Abdoll Latif, Hariati Taib, Ah-mad Fauzi Ismail. Short review: Ceramic foam fabrication techniques for wastewater treatment application. Adv. Mater. Res. 2013. Vol. 795. P. 5—8. DOI: 10.4028/www. scientific.net/AMR.795.5.

4. Colombo P. Conventional and novel processing methods for cellular ceramics. Philos. Trans. Royal Soc. A. 2006. Vol. 364. P. 109—124. DOI: 10.1098/rsta.2005.1683.

5. Valdevit Lorenzo, Jacobsen Alan J., Greer Julia R., Carter William B. Protocols for the optimal design of multi-functional cellular structures: From hypersonics to micro-architected materials. J. Am. Ceram. Soc. 2011. Vol. 94. P. 15—34. DOI: 10.1111/j.1551-2916.2011.04599.x.

6. Schwartzwalder Karl, Somers Arthur V. Method of making porous ceramic ar ticles: Pat. 3090094 (USA). 1963.

7. Vakifahmetoglu C., Menapace I., Hirsch A., Biasetto L., Hauser R., Riedel R., Colombo P. Highly porous macro- and micro-cellular ceramics from a polysilazane precursor. Ceram. Int. 2009. Vol. 35. P. 3281—3290. DOI: 10.1016/j. ceramint.2009.05.022.

8. Sister V.G., Ivannikova E.M., Semin M.A., Egorov A.A. Preparation of highly porous cellular glass materials in the field of pyroxene crystallization. Chem. Petr. Eng. 2011. Vol. 46. No. 9—10. P. 631—633. DOI: 10.1007/ s10556-011-9386-1.

9. Dobrovol’skii A.G. Shlikernoe lit’e [Slip casting]. Moscow: Metallurgiya, 1977.

10. Vysokoporistye pronitsaemye materialy [Highly porous permeable materials]. Ed. V.N. Antsiferov. Ekaterinburg: UrO RAN, 2002.

11. Sifontes A.B., Urbina M., Fajardo F., Melo L., Garcia L., Me-diavilla M.,. Carrión N., Brito J.L., Hernández P., Solano R., Melas G., Quintero A. Preparation of γ-alumina foams of high surface area employing the polyuretane spronge replica method. Latin Am. Appl. Res. 2010. Vol. 40. No. 2. P. 185—191.

12. Antsiferov V.N., Makarov A.M., Ostroushko A.A. Vysokoporistye pronitsaemye yacheistye materialy — perspektivnye nositeli katalizatorov [Highly porous permeable cellular materials — promising catalysts]. Ekaterinburg: UrO RAN, 2006.

13. Labaki M., Lamonier J.-F., Siffert S., Zhilinskaya E.A., Aboukaïs A. Total oxidation of propene and toluene on copper/yttrium doped zirconia. Kinet. Catal. 2004. Vol. 45. No. 2. P. 227—233. DOI: 10.1023/B:KI-CA.0000023796.52228.44.

14. Ayastuy J.L., Gurbani A., González-Marcos M.P., Gutiérrez-Ortiz M.A. Selective CO oxidation in H<sub>2</sub> streams on CuO/Ce<sub>x</sub>Zr<sub>1-x</sub>O<sub>2</sub> catalysts: Correlation between activity and low temperature reducibility // Int. J. Hydrogen Energy. 2012. Vol. 37. Iss. 2. P. 1993—2006. DOI: 10.1016/j.ijhydene.2011.04.178

15. Antsiferov V.N., Porozova S.E., Kul’met’eva V.B. Effect of water soluble polymer additives on the phase composition and size of zirconia particles during precipitation from salt solutions. Glass Phys. Chem. 2012. Vol. 38. No. 3. P. 322—326. DOI: 10.1134/S1087659612030029.

16. Porozova S.E., Solnyshkov I.V., Kul’met’eva V.B., Shokov V.O. Features of ZrO<sub>2</sub>—Y<sub>2</sub>O<sub>3</sub> system nanopowders with a different Y<sub>2</sub>O<sub>3</sub> content // Refract. Ind. Ceram. 2015. Vol. 56. No. 4. P. 333—336. DOI: 10.1007/s11148-015-9843-z.

17. Galakhov A.V. Agglomerates in nanopowders and ceramic technology. Refract. Ind. Ceram. 2009. Vol. 50. No. 5. P. 348—353. DOI: 10.1007/s11148-010-9212-x.

18. Zigan’shin I.R., Porozova S.E., Karmanov V.I., Torsunov M.F., Hafizova R.M. Change in the characteristics of the industrial powder of zirconium oxide and materials based on it by mechanochemical activation. Russ. J. Non-Ferr. Met. 2010. Vol. 51. No. 4. P. 337—341. DOI: 10.3103/ S1067821210040140.

19. Ghosh A., Suri A.K., Pandey M., Thomas S., Mohan T.R.R., Rao B.T. Nanocrystalline zirconia-yttria system — a Ra-man study. Mater. Lett. 2006. Vol. 60. P. 1170—1173. DOI: 10.1016/j.matlet.2005.10.102.

20. Liang Bo, Ding Chuanxian, Liao Hanlin, Coddet Christian. Study on structural evolution of nanostructured 3 mol.% yttria stabilized zirconia coatings during low temperature ageing. J. Eur. Ceram. Soc. 2009. Vol. 29. Iss. 11. P. 2267— 2273. DOI: 10.1016/j.jeurceramsoc.2009.01.002.

21. Yampolskii A.M. Mednenie i nikelirovanie [The copper plating and nickel plating]. Ed. M.P. Vyacheslavov. Lenin-grad: Mashinostroenie. Leningradskoe otdelenie, 1977.

22. Kumari Latha, Du G.H., Li W.Z., Vennila R. Selva, Saxena S.K., Wang D.Z. Syntesis, microstructure and optical characterization of zirconium oxide nanostructures. Ceram. Int. 2009. Vol. 35 P. 2401—2408. DOI: 10.1016/j. ceramint.2009.02.007.


Review

For citations:


Porozova S.E., Smetkin A.A., Solnyshkov I.V. COMPOSITION AND STRUCTURE OF THE SURFACE OF HIGHLY POROUS MATERIALS BASED ON ZIRCONIA STABILIZED WITH YTTRIA. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(4):68-75. (In Russ.) https://doi.org/10.17073/1997-308X-2016-4-68-75

Views: 1021


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)