PRODUCTION, STRUCTURE AND PROPERTIES OF POROUS MATERIALS OF TITANIUM FIBERS AND WIRE
https://doi.org/10.17073/1997-308X-2016-4-76-85
Abstract
Keywords
About the Authors
S. D. ShlyapinRussian Federation
Dr. Sci. (Tech.), prof., Department of materials science
M. M. Serov
Russian Federation
Dr. Sci. (Tech.), prof., Department of materials science
D. E. Gusev
Russian Federation
Cand. Sci. (Tech.), prof., Department of materials science
L. V. Fedorova
Russian Federation
Cand. Sci. (Tech.), associate prof., Department of materials science
References
1. Kostornov A.G., Shevchuk M.S., Fedorchenko I.M. Svoistva nekotorykh metallicheskikh volokon i materialov na ikh osnove [The properties of some metallic fibers and materials on their basis]. Poroshkovaya metallurgiya. 1975. No. 11. C. 41—48.
2. Ryan G., Pandit A., Panagiotis Apatsidis D. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006. Vol. 27. Iss. 13. P. 2651—2670.
3. Savich V.V. Kiselev M.G., Voronovich A.I. Sovremennye materialy khirurgicheskikh implantatov i instrumentov [Modern materials for surgical implants and instruments]. Minsk: DoktorDizain, 2004.
4. Kitaoka K., Yamamoto H., Tani T., Hoshuima K., Nakaushi M. Mechanical strength and bone bonding of titanium fiber mesh block for intervertebral fusion. J. Orthop. Sci. 1997. Vol. 2. Iss. 2. P. 106—113.
5. Jiang G., He G. Enhancement of porous titanium with entangled wire structure for load-bearing biomedical applications. Mater. Design. 2014. Vol. 56. P. 241—244.
6. He G., Liu P., Tan Q., Jiang G. Flexural and compressive mechanical behaviors of the porous titanium materials with entangles wire structure at different sintering conditions for load-bearing biomedical applications. J. Mechan. Behav. Biomed. Mater. 2013. Vol. 28. P. 309—319.
7. Andani M.T., Moghaddam N.S., Haberland C., Dean D. Metals for implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater. 2014. Vol. 10. P. 4058—4070.
8. Galante J.O., Rostoker W., Lueck R. Sintered fiber metal composites as a basis for attachment of implants to bone. J. of Bone and Joint Surgery. 1971. Vol. 53A. No. 1. P. 101—114.
9. Stangl R., Rinne B., Kastl S., Hendrich C. The influence of pore geometry in Ti-implants — a cell culture investigation. Eur. Cells Mater. 2001. Vol. 2. P. 1—9.
10. Gradzka-Dahlke Malgorzata, Dabrowski Jan R., Dabrowski B. An overview on the usage of the powder metallurgy method for surgical implants production. J. Vibroeng. 2006. Vol. 8. No. 2. P. 11—16.
11. Vityaz P.A.,Kaptsevich V.M., Kostornov A.G., Georgiev V.P., Sheleg V.K. Formirovanie struktury i svoistv poristykh materialov [The porous structure formation and properties of powder materials]. Moscow: Metallurgiya, 1993.
12. Melikyan M.L., Itin V.I. Dinamika mineralizatsii kostnoi tkani v poristom titane i prochnostnye svoistva kompozita «titan—kostnaya tkan’» [Dynamics of bone mineralization in a porous titanium and strength properties «titanium—bone» composite]. Pis’ma v GTF. 2002. Vol. 28. Iss. 16. С. 20—24.
13. Itin V.I., Gyunter V.E., Khodorenko V.I., Chobayan M.L. Prochnostnye svoistva poristykh pronitsaemykh mate-rialov na osnove titana dlya stomatologii [Mechanical properties of porous penetrative titanium materials for stomatology]. Poroshkovaya metallurgiya. 1997. No. 9—10. P. 29—33.
14. Berezovskii V.A., Kolotilov N.N. Biofizicheskie kharakteristiki tkanei cheloveka [Biophysical characteristics of human tissue]. Kiev: Naukova dumka, 1990.
15. Antsyferov V.N., Serov M.M., Lezhnin V.P., Smetkin A.A. O poluchenii, svoistvakh i primenenii bistrookhlazhdennykh volokon [Production, properties and application of rapidly solidified fibers]. Izv.vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2013. No. 1. P. 55—58.
16. Antsyferov V., Serov M. Manufacturing of a rapid solidification materials and fibers. Lap Lambert Academic Pub-lising, 2014.
17. Shlyapin S.D., Kollerov M.Yu., Gusev D.E., Senkevich K.S., Stepanova E.A. Poluchenie poristykh meditsinskikh implantatov s ispol’zovaniem diffuzionnoi svarki [Production of porous medical implant using diffusion welding]. Tekhnologiya legkikh splavov. 2007. No. 3. P. 138—143.
18. Balshin M.Yu. Nauchnye osnovy poroshkovoi metallurgii i metallurgii volokna [Scientific basis of powder metallurgy and metallurgy of fiber]. Moscow: Metallurgiya, 1972.
19. Kollerov M.Yu., Shlyapin S.D., Senkevich K.S., Kazantsev A.A., Runova Yu.E. Ispol’zovanie termovodorodnoi obrabotki pri izgotovlenii poristykh materialov i izdelii iz titanovykh volokon i provoloki [Application of thermo-hydrogen treatment in the porous materials manufacture and products from titanium fibers and wires]. Metallurg. 2015. No. 3. P. 61—66.
20. Trifonov B.V., Nadezhdin S.V., Kolobov Yu.R., Khramov G.V., Serov M.M., Ligachev A.E., Oleinik E.A., Ovchinnikov I.V. Regeneratsia kostnoi tkani pri zapolnenii defekta kompozitom «titanovoe volokno — kostno-plasticheskii material» [Regeneration of the bone tissue in the filling of the defect with composite of titanium fiber — osteo-plastic material]. Kompozity i nanostruktury. 2013. No. 2. P. 59—64.
Review
For citations:
Shlyapin S.D., Serov M.M., Gusev D.E., Fedorova L.V. PRODUCTION, STRUCTURE AND PROPERTIES OF POROUS MATERIALS OF TITANIUM FIBERS AND WIRE. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(4):76-85. (In Russ.) https://doi.org/10.17073/1997-308X-2016-4-76-85