Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

EVALUATION OF THERMAL STABILITY OF MULTILAYER NANOSTRUCTURED COATINGS BY ANALYZING DIFFUSION MOBILITY OF LAYER COMPONENTS

https://doi.org/10.17073/1997-308X-2016-4-86-93

Abstract

The thermal stability of multilayer nanostructured coatings is investigated by analyzing the diffusion mobility of layer components. The paper studies in detail the possibility of increasing the thermal stability of multilayer coatings based on mutually-soluble Ti–Al–N and Cr–N layers by introducing an additional Zr–N-based barrier layer into the multilayer nanostructure. The calculated coefficients of basic coating metal element diffusion into the corresponding nitride layers when heating to 800–1000 °C show no significant diffusion blur of layer boundaries in the presence of a Zr–N-based barrier layer. Thus, its introduction reduces their values (obtained at t = 1000 °C, cm2/s: DCr/TiN = 5·10–17, DCr/ZrN = 2·10–18; DTi/Cr2N = 9·10–18, DTi/ZrN = 3·10–18). Physical and mechanical properties of the coatings are not changed during vacuum annealing at t < 900 °C but significantly degrade as the annealing temperature rises further due to the degradation of the multilayer structure of coatings during their annealing.

About the Authors

A. O. Volkhonskii
NUST «MISIS
Russian Federation
Cand. Sci. (Tech.), senior lecturer, Department of functional nanosystems and high-temperature materials (FNS&HTM) of the National University of Science and Technology


I. V. Blinkov
NUST «MISIS
Russian Federation
Dr. Sci. (Tech.), prof., Department of FNS&HTM


Yu. V. Levinsky
Moscow Technological University
Russian Federation
Dr. Sci. (Tech.), prof., Department of chemistry and technology of rare and scattered elements, and nanoscale composite materials, MITHT


E. A. Skryleva
NUST «MISIS
Russian Federation
scientific researcher, Department of materials science of semiconductors and dielectrics


References

1. Antsiferov V.N., Kameneva A.L., Pimenova N.V. Izuchenie struktury i formirovaniya nanorazmernykh ionno-plazmennykh pokrytii Ti—Zr—N, Ti—Al—N, Ti—Zr—O—N, Ti—Al—O—N i Ti—B—Si—N. In: Tonkie plenki v elektronike: Mater. XIII Mezhdunar. nauch.-tekhn. konf. [Study of the structure and the formation of nanosize ion-plasma Ti—Zr—N, Ti—Al—N, Ti—Zr—O—N, Ti— Al—O—N and Ti—B—Si—N coatings. In: Thin films in the electronics: Mater. XIII Intern. scientific and technical. conf. (Moscow, 6—8 Sept. 2008)]. Moscow: Bauman Moscow State Technical University, 2007. P. 328—335.

2. Antsiferov V.N., Kameneva A.L. Strukturoobrazovanie (nanostrukturirovanie) plenok ionno-plazmennymi metodami (obzor). In: Tonkie plenki v elektronike: Mater. XIV Mezhdunar. nauch.-tekhn. konf. [Structure formation (nanostructuring) of films obtained by ion-plasma methods (review). In: Thin films in the electronics: Mater. XIV Intern. scientific and technical. conf. (Moscow, 11—13 Sept. 2008)]. Moscow: AO TsNITI «Tekhnomash», 2008. P. 448—453.

3. Antsiferov V.N., Kosogor S.P. Issledovanie fazovogo sostava i struktury mnogosloinykh nanokristallicheskikh pokrytii na osnove karbidov i nitridov titana [The phase composition and structure of multilayer nanostructured coatings based on carbides and nitrides of titanium]. Metally. 1997. No. 6. Р. 93—96.

4. Antsiferov V.N., Kameneva A.L. Eksperimental’noe issledovanie stroeniya mnogokomponentnykh nanostrukturnykh pokrytii na osnove Ti—Zr—N, sformirovannykh ionno-plazmennymi metodami [Experimental study of the structure of Ti—Zr—N multicomponent nanostructured coatings formed ion-plasma methods]. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2007. No. 1. P. 53—61.

5. Antsiferov V.N., Kameneva A.L. Sposob polucheniya pokrytiya na osnove slozhnykh nitridov [The process for producing coatings based on nitrides complex]: Pat. 2429311 (RF). 2011.

6. Antsiferov V.N., Kameneva A.L., Klochkov A.Yu., Novikov R.S. Sposob polucheniya iznosostoikogo pokrytiya [A method for producing a wear-resistant coating]: Pat. 2361013 (RF). 2009.

7. Nordin M., Larsson M., Hogmark S. Mechanical and tribo-logical properties of multilayered PVD TiN/CrN. Wear. 1999. Vol. 232. P. 221—225. http://www.sciencedirect. com/science/article/pii/S0043164899001490.

8. Yaomin Zhou, Reo Asaki, We-Hyo Soe, Ryoichi Yamamo-to, Rong Chen, Akira Iwabuchi. Hardness anomaly, plastic deformation work and fretting wear properties of polycrystalline TiN/CrN multilayers. Wear. 1999. Vol. 236. P. 159—164. http://www.sciencedirect.com/science/article/ pii/S0043164899002720/

9. Zhang Z.G., Rapaud O., Allain N., Mercs D., Baraket M., Dong C., Coddet C. Microstructures and tribological properties of CrN/ZrN nanoscale multilayer coatings. Appl. Surf. Sci. 2009. Vol. 255. P. 4020—4026. http://www.sciencedirect.com/science/article/pii/ S0169433208022423.

10. Hollek H. Dvoinye i troinye karbidnye i nitridnye sistemy perekhodnykh metallov [Binary and ternary transition metal nitride system]. Ed. Yu.V. Levinsky. Moscow: Me-tallurgiya, 1988.

11. Barshilia Harish C., Anjana Jain, Rajam K.S. Structure, hardness and thermal stability of nanolayered TiN/CrN multilayer coatings. Vacuum. 2004. Vol. 72. P. 241—248. http://www.sciencedirect.com/science/article/pii/ S0042207X03001477.

12. Kieffer R., Ettmayer P. Recent advances in the knowledge and applications of transition metal nitrides. High Temp. — High Pressures. 1974. Vol. 6. P. 253—260.

13. Zeng X.T., Zhang S., Sun C.Q., Liu Y.C. Nanometric-layered CrN/TiN thin films mechanical strength and thermal stability. Thin Solid Films. 2003. Vol. 424. P. 99—102. http://www.sciencedirect.com/science/article/pii/ S0040609002009215.

14. Blinkov I.V., Volkhonskii A.O., Kuznetsov D.V., Skryleva E.A. Investigation of structure and phase formation in multilayer coatings and their thermal stability. J. Alloys Compd. 2014. Vol. 586. P. S381—S386. http://www.sciencedirect. com/science/article/pii/S0925838812021731.

15. Shelekhov E.V., Sviridova T.A. Programs for X-ray analysis of polycrystals. Met. Sci. Heat Treat. 2000. Vol. 42. P. 309—313. http://link.springer.com/article/10. 1007%2FBF02471306.

16. Hui-Wen Chang, Ping-Kang Huang, Jien-Wei Yeh, Andrew Davison, Chun-Huai Tsau, Chih-Chao Yang. Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings. Surf. Coat. Technol. 2008. Vol. 202. P. 3360— 3366. http://www.sciencedirect.com/science/article/pii/ S0257897207012650.

17. Biwer B.M., Bernasek S.L. Electron spectroscopic study of the iron surface and its interaction with oxygen and nitrogen. J. Electron Spectrosc. Relat. Phemon. 1986. Vol. 40. P. 339—351. http://www.sciencedirect.com/science/ article/pii/0368204886800445.

18. Takano I., Isobe S., Sasaki T.A., Baba Y. Nitrogenation of various transition metals by N+2-ion implantation. Appl. Surf. Sci. 1989. Vol. 37. P. 25—32. http://www. sciencedirect.com/science/article/pii/0169433289909707.

19. Nishimura O., Yabe K., Iwaki M. X-ray photoelectron spectroscopy studies of high-dose nitrogen ion implanted-chromium: a possibility of a standard material for chemical state analysis. J. Electron Spectrosc. Relat. Phemon. 1989. Vol. 49. P. 335—342. http://www.science-direct.com/science/article/pii/0368204889850212.


Review

For citations:


Volkhonskii A.O., Blinkov I.V., Levinsky Yu.V., Skryleva E.A. EVALUATION OF THERMAL STABILITY OF MULTILAYER NANOSTRUCTURED COATINGS BY ANALYZING DIFFUSION MOBILITY OF LAYER COMPONENTS. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(4):86-93. (In Russ.) https://doi.org/10.17073/1997-308X-2016-4-86-93

Views: 923


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)