Ceramic-metallic (TiN–Cu) nanostructural ion-plasma vacuum-arc coatings of cutting carbide tools
https://doi.org/10.17073/1997-308X-2013-2-54-59
Abstract
Studies of structure and properties of TiN-Cu coatings with a wide interval of copper concentrations from 0,6 to 20 at. % have been carried out in- cluding its cutting action tests. The coatings were produced by the ion-plasma vacuum-arc deposition onto TT10K8B carbide cutting tool. Introduc- tion of copper into the composition of the coating results in nitride phase crystallite size reduction from 100 to 20 nm. In this case the hardness of coatings grows from 20 to 40 GPA while copper content in the coating increases up to 7–8 at. %. Further increase of copper content, which is accom- panied by nitride phase crystallite size reduction, is characterized by decrease of hardness down to 14–15 GPA concerned with the effect of soft duc- tile metal on it. The life tests of mechanical cutting by TiN-Cu coated 35KhGSA SMP steel show that the optimum composition of the coatings (TiN – 7–8 ат. % Cu) increases the durability of tools with replaceable polygonal inserts (SMP) more than 6 and 2,5 times compared with uncoated tool and TiN coated tool according to the basic technique respectively.
About the Authors
I. V. BlinkovRussian Federation
A. O. Volkhonsky
Russian Federation
A. I. Laptev
Russian Federation
T. A. Sviridova
Russian Federation
N. Yu. Tabachkova
Russian Federation
D. S. Belov
Russian Federation
A. V. Yershova
Russian Federation
References
1. Штанский Д. В., Кулинич С. А., Левашов Е. А., Moore J. J. // Физика твердого тела. 2003. Т. 45, No 6. С. 1122–1129.
2. Блинков И. В., Волхонский А. О., Юдин А. Г. // Физика и химия обраб. матер. 2011. No 6. С. 18.
3. Volkhonsky A., Blinkov I. V. // Rus. J. Non-Ferrous Metals. 2012. Vol. 53, No 3. Р. 259–265.
4. Veprek S., Veprek-Heijman M. G. J., Karvankova P., Prochazka J. // Thin Solid Films. 2005. Vol. 476. Р. 1–9.
5. Ivanov Yu. F., Koval N. N., Krysina O. V. et al. // Surface and Coat. Technol. 2012. Vol. 207. Р. 430–434.
6. Patsalas P., Abadias G., Matenoglou G. M. et al. // Ibid. 2010. Vol. 205. Р. 1324–1330.
7. Li Z. G., Miyake S., Kumagai M. et al. // Ibid. 2004. Vol. 183. Р. 62–68.
8. Akbari А., Riviere J. P., Templier C., Bourhis E. Le // Ibid. 2006. Vol. 200. Р. 6298–6302.
9. Шелехов Е. В., Иванов А. Н., Фомичева Е. И. // Завод. лаб. 1989. No 12. С. 41–45.
10. Шелехов Е. В., Свиридова Т. А. // МиТОМ. 2000. No 8. С. 16–19.
11. Иванов А. Н., Шелехов Е. В., Кузьмина Е. Н. // Завод. лаб. Диагностика материалов. 2004. Т. 70, No 11. С. 29–33.
12. Блинков И. В., Анкин В. Н., Волхонский А. О. и др. // Изв. вузов. Порошк. металлургия и функц. покрытия. 2009. No 1.
13. С. 44–52.
14. Дульнев Г. Н., Заричняк Ю. П. Теплопроводность смесей и композиционных материалов: Справочник. Л.: Энергия, 1974.
Review
For citations:
Blinkov I.V., Volkhonsky A.O., Laptev A.I., Sviridova T.A., Tabachkova N.Yu., Belov D.S., Yershova A.V. Ceramic-metallic (TiN–Cu) nanostructural ion-plasma vacuum-arc coatings of cutting carbide tools. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2013;(2):54-59. (In Russ.) https://doi.org/10.17073/1997-308X-2013-2-54-59