Preview

Powder Metallurgy аnd Functional Coatings

Advanced search
Open Access Open Access  Restricted Access Subscription Access

FeCl2–CaCl2 melt volumetric reduction by calcium dissolved in calcium chloride

https://doi.org/10.17073/1997-308X-2018-3-4-10

Full Text:

Abstract

The purpose of this study is to obtain highly dispersed powder suitable for spheroidization for further application in additive technologies. Volumetric reduction of the FeCl2–CaCl2 melt by calcium dissolved in CaCl2 produced fine iron powder. The process consisted of three stages: preparation of melts containing FeCl2 and Ca, their mixing and high-temperature aging at 800 °C for 1 hour. At the end of the process the frozen melt was divided into upper and bottom parts. The product from the upper part had a specific surface area of 7,60 m2/g, and for the lower part it was 5,38 m2/g, Average particle size was 157 μm for the former and 124 μm for the latter. After ultrasonic dispersion, it was reduced to 26 μm and 71 μm, respectively. Quantitative X-ray phase analysis showed that the main phase of powder is metallic iron (more than 97 wt.%). Therefore, research originality is the use of volumetric, intensive reduction of iron from chloride melts by calcium dissolved in its chloride. The uniqueness of the study consists in the product obtained, i.e. the main part of reduced iron is in the melt volume as linear aggregates 40 to 600 μm in length, 10 to 50 μm in diameter that are easily broken by ultrasonic dispersion into individual crystals with an average size of 26 μm. The results of the study demonstrated the feasibility of calcium-thermal production of fine iron powder.

About the Authors

V. V. Polyakov
Ural Federal University n.a. the First President of Russia B.N. Yeltsin
Russian Federation

Postgraduate student, Department of metallurgy of non-ferrous metals UrFU.

620002, Ekaterinburg, Mira str., 19



A. V. Babin
Ural Federal University n.a. the First President of Russia B.N. Yeltsin
Russian Federation

Cand. Sci. (Tech.), Assistant prof., Department of metallurgy of non-ferrous metals UrFU.

620002, Ekaterinburg, Mira str., 19



V. A. Lebedev
Ural Federal University n.a. the First President of Russia B.N. Yeltsin
Russian Federation

Dr. Sci. (Chem.), Prof., Department of metallurgy of non-ferrous metals UrFU.

620002, Ekaterinburg, Mira str., 19



References

1. Lykov P.A. Razrabotka gidropnevmoagregatov mashin po proizvodstvu mikroporoshkov iz zhidkikh metallov [Development of hydropneumatic machines for the production of micropowders from liquid metals]: Abst. Diss. of PhD. Chelyabinsk: YuUrGU, 2014. http://tekhnosfera.com/view/447915/a?#?page=1.

2. Antsiferov V.N., Bobrov G.V., Druzhinin L.K., Kiparisov S.S., Kostikov V.I., Krupin A.V., Kudinov V.V., Libenson G.A., Mitin B.S., Roman O.V. Poroshkovaya metallurgiya i napylennye pokrytiya [Powder metallurgy and spray coatings]. Moscow: Metallurgiya, 1987.

3. Kiparisov S.S., Libenson G.A. Poroshkovaya metallurgiya [Powder metallurgy]. Moscow: Metallurgiya, 1972.

4. Ramakrishnan P. Iron powder from iron scrap. Conservat. Recycl. 1983. Vol. 6. No. 1. P. 49—54. DOI: dx.doi.org/10.1016/0361-3658(83)90016-4.

5. Hoeges S., Zwiren A., Schade C. Additive manufacturing using water atomized steel powders. Metal Powder Rep. 2017. Vol 72. No. 2. P. 111—117. DOI: dx.doi.org/10.1016/j.mprp.2017.01.004.

6. Zlenko M.A., Nagaitsev M.V., Dovbysh V.M. Additiivnye tekhnologii v mashinostroenii: Posobie dlya inzhenerov [Additive technologies in mechanical engineering: The manual for engineers]. Mosсow: NAMI, 2015. P. 160—171.

7. Tsantrizos P.G., Allaire F., Entezarian M. Method of production of metal and ceramic powders by plasma atomization: Pat. 5707419 (USA). 1998. https://www.google.com/patents/US5707419.

8. Boulos M. Plasma power can make better powders. Metal Powder Rep. 2004. Vol. 59, No. 5. P. 16—21. DOI: dx.doi.org/10.1016/S0026-0657(04)00153-5.

9. Aleksandrov V.G. Vliyanie «teplogo pressovaniya» i stepeni legirovaniya na strukturu i svoistva izdelii iz metallicheskikh poroshkov [The influence of «warm pressing» and the degree of alloying on the structure and properties of products made of metallic powders]: Abst. Diss. of PhD. Perm’: PNIPU, 2005. http://pstu.ru/files/file/adm/dissertacii/aleksandrov/aftoreferat_aleksandrov_vg.pdf.

10. Ye Q., Zhu H., Zhang L., Ma J., Zhou L., Liu P., Chen J., Chen G., Peng J. Preparation of reduced iron powder using combined distribution of wood-charcoal by microwave heating. J. Alloys and Compd. 2014. Vol. 613. P. 102—106. DOI: dx.doi.org/10.1016/j.jallcom.2014.06.016.

11. Martin M.I., Lopez F.A., Torralba J.M. Production of sponge iron powder by reduction of rolling mill scale. Ironmaking and Steelmaking. 2012. Vol 39. No. 3. P. 155—162.

12. Squires A.M., Johnson C.A. The h-iron process. J. Metals. 1957. P. 586—590.

13. Brooks J. Production of ferrous chloride and metallic iron powder: Pat. 2762700 A (US). 1956.

14. Gaballah N., Zikry A., Khalifa M., Farag A., El-Hussiny N., Shalabi M. Production of iron from mill scale industrial waste via hydrogen. Open J. Inorg. Non-metal. Mater. 2013. Vol. 3 No. 3. P. 23—28. DOI: dx.doi.org/10.4236/ojinm.2013.33005.

15. Bloemacher D. Carbonyl iron powders: Its production and new developments. Metal Powder Rep. 1990. Vol. 45. No. 2. P. 117—119. DOI: dx.doi.org/10.1016/S00260657(10)80122-5.

16. Benchiheub O., Mechachti S., Serrai S., Khalifa M.G. Elaboration of iron powder from mill scale. J. Mater. Envir. Sci. 2010. Vol. 1. No. 4. P. 267—276.

17. Despeisse M., Ford S. The role of additive manufacturing in improving resource efficiency and sustainability. In: Proc. Int. Conf. APMS 2015. United Kingdom: Institute for Manufacturing, University of Cambridge, 2015. http://www.apms-conference.org.

18. Petrick I., Simpson T. 3D Printing disrupts manufacturing. Res. Technol. Management. 2013. Vol. 56. No. 6. DOI: dx.doi.org/10.5437/08956308X5606193.

19. Berman B. 3-D Printing: The new industrial revolution. Business Horizons. 2012. Vol. 55. P. 155—162. DOI: dx.doi.org/10.1016/j.bushor.2011.11.003.

20. Petrovic V., Gonzalez J., Ferrando O., Gordillo J., Puchades J., Griñan L. Additive layered manufacturing: Sectors of industrial application shown through case studies. Int. J. Product. Res. 2011. Vol. 49. No. 4. P. 1061—1079. DOI: dx.doi.org/10.1080/00207540903479786.

21. Gibson I. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. N.Y.: Springer-Verlag, 2015. DOI: dx.doi.org/10.1007/978-1-4939-2113-3.

22. Baimakov Yu.V., Vetyukov M.M. Elektroliz rasplavlennykh solei [Electrolysis of molten salts]. Moscow: Metallurgiya, 1966.

23. Rodyakin V.V. Metallurgiya kal’tsiya [Metallurgy of calcium]. Moscow: Metallurgiya, 1957.

24. Laptev D.A., Polyakov V.V., Babin A.V., Lebedev V.A. Vosstanovitel’naya sposobnost’ rastvorov kal’tsiya v ego rasplavlennom chloride. In: Metallurgiya legkikh i tugoplavkikh metallov: Mater. 3 nauch.-tekhn. konf. [Reducing ability of calcium solutions in its molten chloride. In: Metallurgy of light and refractory metals: Mater. 3-rd Sci. and Techn. Conf.] (10—11 Oct. 2014). Ekaterinburg: UrFU, 2014. P. 169—172.


For citation:


Polyakov V.V., Babin A.V., Lebedev V.A. FeCl2–CaCl2 melt volumetric reduction by calcium dissolved in calcium chloride. Powder Metallurgy аnd Functional Coatings. 2018;(3):4-10. (In Russ.) https://doi.org/10.17073/1997-308X-2018-3-4-10

Views: 635


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)