Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Self-propagating high-temperature synthesis of (Al–2%Mn)–10%TiC and (Al–5%Cu–2%Mn)–10%TiC nanostructured composite alloys when doped with manganese powder

https://doi.org/10.17073/1997-308X-2018-3-30-40

Abstract

The paper studies the effect of doping with manganese powder on the production of (Al–2%Mn)–10%TiC and (Al–5%Cu– 2%Mn)–10%TiC nanostructured composite alloys by self-propagating high-temperature synthesis (SHS) of TiC titanium carbide nanoparticles from Ti + C charge in the melt of matrix alloys. First, manganese metal powder was added to the matrix bases of Al and Al–5%Cu composite alloys in the amount of 2 wt%. This improved aluminum base tensile strength from 81 MPa (for the original A7 grade aluminum) to 136 MPa and aluminum-copper base tensile strength to 169 MPa. It was found that when aluminum was doped with manganese only, the SHS reaction proceeded weakly and not completely, and the carbide phase size in the resulting alloy (Al–2%Mn)–10%TiC varied from nanoscale to several micrometers. When 10% Na2TiF6 halide salt was added to the SHS charge, the SHS process intensified, but the resulting alloy contained a considerable amount of pores, inclusions of unreacted charge and large agglomerates of TiC ceramic nanosized particles. Similar results were obtained in cases of using Ti + C and Ti + C + 10%Na2TiF6 SHS charges, but with joint doping of matrix aluminum with copper and manganese, providing more uniform distribution of the TiC nanodispersed phase. The best results were obtained by reducing the Na2TiF6 salt additive to 5 % of the SHS charge mass, which facilitated smoother and complete synthesis of predominantly TiC nanosized particles and the formation of a non-porous uniform microstructure of (Al–5%Cu–2%Mn)–10%TiC composite alloy with an ultimate tensile strength of 213 MPa and 6,6 % elongation.

About the Authors

A. R. Luts
Samara State Technical University
Russian Federation

Cand. Sci. (Tech.), Associate prof., Department of materials science and commodity expertise SSTU.

443100, Molodogvardeyskaya str., 244



A. P. Amosov
Samara State Technical University
Russian Federation

Dr. Sci. (Phys.-Math.), Prof., Head of Department of metals science, powder metallurgy, nanomaterials (MSPMN) SSTU.

443100, Molodogvardeyskaya str., 244



E. I. Latukhin
Samara State Technical University
Russian Federation

Cand. Sci. (Tech.), Associate prof., Department MSPMN SSTU.

443100, Molodogvardeyskaya str., 244



A. D. Rybakov
Samara State Technical University
Russian Federation

Postgraduate, Department MSPMN SSTU.

443100, Molodogvardeyskaya str., 244



V. A. Novikov
Samara State Technical University
Russian Federation

Postgraduate, Department MSPMN SSTU.

443100, Molodogvardeyskaya str., 244



S. I. Shipilov
Samara State Technical University
Russian Federation

Postgraduate, Department MSPMN SSTU.

443100, Molodogvardeyskaya str., 244



References

1. Kainer K.U. Metal matrix composites. Weinheim: Verlag GmbH & Co. KGaA, 2006.

2. Rana R.S., Purohit R., Das S. Review of recent studies in Al matrix composites. Int. J. Sci. Eng. Res. 2012. Vol. 3. No. 6. P. 1—16.

3. Kurdyumov A.V., Pikunov M.V., Chursin V.M., Bibikov V.L. Proizvodstvo otlivok iz splavov tsvetnykh metallov [Manufacture of castings from alloys of non-ferrous metals]. Moscow: MISIS, 1996.

4. Mikheev R.S., Chernyshova T.A. Diskretno armirovannye kompozitsionnye materialy sistemy Al—TiC [Discretely reinforced composite materials of the Al—TiC system]. Zagotovitel’nye proizvodstva v mashinostroenii. 2008. No. 11. P. 44—53.

5. Jerome S., Ravisankar B., Mahato P.K., Natarajan S. Synthesis and evaluation of mechanical and high temperature tribological properties of in-situ Al—TiC composites. Tribology Int. 2010. Vol. 43. No. 11. Р. 2029—2036.

6. Kim S.H., Cho Y.H., Lee J.M. Particle distribution and hot workability of in situ synthesized Al—TiC composite. Metal. Mater. Trans. 2014. Vol. 45. No. 6. Р. 2873—2884.

7. Tjong S.Ch. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv. Eng. Mater. 2007. Vol. 9. No. 8. Р. 639—652.

8. Camargo P.H.C., Satyanarayana K. G., Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mat. Res. 2009. Vol. 12. No. 1. Р. 1—39.

9. Krushenko G.G. Rol’ chastits nanoporoshkov pri formirovanii struktury alyuminievykh splavov [The role of nanopowder particles in the formation of the structure of aluminum alloys]. Metallurgiya mashinostroeniya. 2011. No. 1. Р. 20—24.

10. Casati R., Vedani M. Metal matrix composites reinforced by nano-particles: А Review. Metals. 2014. No. 4. P. 65—83.

11. Fallahdoost H., Nouri A., Azimi A. Dual functions of TiC nanoparticles on tribological performance of Al/grafite composites. J. Phys. Chem. Sol. 2016. Vol. 93. P. 137—144.

12. Azimi A., Shokuhfar A., Nejadseyfi O. Optimizing consolidation behavior of Al 7068—TiC nanocomposites using taguchi statistical analysis. Trans. Nonferr. Met. Soc. China. 2015. Vol. 25. P. 2499—2508.

13. Prusov E.S., Panfilov V.A., Kechin V.A. Rol’ poroshkovykh prekursorov pri poluchenii kompozitsionnykh splavov zhidkofaznymi metodami [The role of powder precursors in the preparation of composite alloys by liquid-phase methods]. Izv. vuzov. Poroshk. metallurgia i funkts. pokrytiya. 2016. No. 2. P. 47—58.

14. Prusov E.S, Panfilov V.A, Kechin V.A. Vliyanie uslovii plavki i lit’ya alyumomatrichnykh nanokompozitov na strukturu litykh zagotovok [Influence of melting and casting conditions on alumo-matrix nanocomposites on the structure of cast billets]. Liteishchik Rossii. 2017. No. 4. P. 10—15.

15. Amosov A.P., Nikitin V.I., Nikitin K.V., Ryazanov S.A. Nauchno-tekhnicheskie osnovy primeneniya protsessov SVS dlya sozdaniya litykh alyumomatrichnykh kompozitsionnykh splavov, diskretno armirovannykh nanorazmernymi keramicheskimi chastitsami [Scientific and technical fundamentals of the use of SHS processes for creating cast aluminum-matrix composite alloys discretely reinforced with nanoscale ceramic particles]. Naukoemkie tekhnologii v mashinostroenii. 2013. No. 8. P. 3—10.

16. Amosov A.P., Luts A.R., Latukhin E.I., Ermoshkin A.A. Primenenie protsessov SVS dlya polucheniya in situ alyumomatrichnykh kompozitsionnykh materialov, diskretno armirovannykh nanorazmernymi chastitsami karbida titana: Obzor [Application of SHS processes for in situ production of aluminum-matrix composite materials discretely reinforced with nanoscale titanium carbide particles: Overview]. Izv. vuzov. Tsvet. metallurgiya. 2016. No. 1. P. 39—49.

17. Rai R.N., Prasado Rao A.K., Dutta G.L., Chakraborty M. Forming behavior of Al—TiC in-situ composites. Mater. Sci. Forum. 2013. Vol. 765. P. 418—422.

18. Dongshuai Zhou, Feng Qiun, Qichuan Jiang. The nanosized TiC particle reinforced Al—Cu matrix composite with superior tensile ductility. Mater. Sci. Eng. 2015. Vol. 622A. Р. 189—193.

19. Prosviryakov A.S., Shcherbachev K.D., Tabachkova N.Yu. Microstructural characterization of mechanically alloyed Al—Cu—Mnalloy with zirconium. Mater. Sci. Eng. 2015. Vol. 623A. Р. 109—113.

20. Belov N.A. Fazovyi sostav promyshlennykh i perspektivnykh alyuminievykh splavov [Phase composition of industrial and advanced aluminum alloys]. Мoscow: MISIS, 2010.

21. Cho Y.H., Lee J.M., Kim S.H. Composites fabricated by a thermally activated reaction process in an al melt using Al—Ti—C—CuO powder mixtures: Pt. I: Microstructural evolution and reaction mechanism. Metal. Mater. Trans. 2014. Vol. 45A. P. 5667—5678.

22. Cho Y.H., Lee J.M., Kim S.H. Al—TiC Composites fabricated by a thermally activated reaction process in an Al melt using Al—Ti—C—CuO powder mixtures: Pt. II. Microstructure control and mechanical properties. Metal. Mater. Trans. 2015. Vol. 46A. P. 1374—1384.

23. Luts A.R., Amosov A.P., Latukhin E.I., Ermoshkin A.A. Armirovanie splava Al—5%Cu nanochastitsami karbida titana metodom SVS v rasplave [Reinforcement of the Al—5% Cu alloy by nanoparticles of titanium carbide by the SHS method in the melt]. Izvestiya SNTs RAN. 2017. No. 1(3). P. 529—536.

24. Kvasov F.I., Fridlyander I.N. Alyuminievye splavy tipa duralyumin [Aluminum alloys such as duralumin]. Moscow: Metallurgiya, 1984.

25. Luts A.R., Makarenko A.G. Samorasprostranyayushchiisya vysokotemperaturnyi sintez alyuminievykh splavov [Self-propagating high-temperature synthesis of aluminum alloys]. Moscow: Mashinostroenie, 2008.


Review

For citations:


Luts A.R., Amosov A.P., Latukhin E.I., Rybakov A.D., Novikov V.A., Shipilov S.I. Self-propagating high-temperature synthesis of (Al–2%Mn)–10%TiC and (Al–5%Cu–2%Mn)–10%TiC nanostructured composite alloys when doped with manganese powder. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(3):30-40. (In Russ.) https://doi.org/10.17073/1997-308X-2018-3-30-40

Views: 786


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)