SHS-aided joining of ceramics with Ta substrate
https://doi.org/10.17073/1997-308X-2018-3-41-45
Abstract
The possibility of joining ceramic materials with a Ta substrate was explored in the conditions of self-propagating high-temperature synthesis (SHS). The sample used in experiments consisted of Ta foils, Ti + 0,65C pellet, 5Ti + 3Si pellet, and a Ti + 2B igniting tape laid between them. The sample was installed onto a BN base and covered by a chamotte brick (SiO2 + Al2O3) plate with a weight of 3,36 kg placed on top in order to reduce heat sink. Experiments were performed in a closed reactor under 1 atm of Ar. Samples were preheated from the bottom, after which SHS reaction was initiated from the butt. Temperature was monitored with three W/Re thermocouples. Depending on heating rate, temperature gradient along the sample depth had a value of 50–150 deg/mm. The samples obtained exhibited strong joining between Ta foil and Ti + 0,65C and also between the two pellets. The upper foil did not stick to the 5Ti + 3Si pellet, which can be explained by low temperature at the interface (1600 °C). At the Ta–TiC interface, the formation of Ti–Ta and (Ti, Ta)C interlayers was observed. The studies conducted demonstrate the possibility of Ta foil joining with ceramic materials under SHS conditions. Main conditions for this joint are the presence of a liquid phase and Ti + 0,65C combustion temperature matching the Ta substrate melting temperature. The results may be useful for deposition of multilayer functional coatings and functionally graded materials.
About the Authors
O. K. KamyninaRussian Federation
Cand. Sci. (Phys.-Math.), Secretary for science ISMAN.
142432, Moscow Region, Chernogolovka, Academician Osipyan str., 8
S. G. Vadchenko
Russian Federation
Cand. Sci. (Phys.-Math.), Leading researcher, Laboratory of the dynamics of microheterogeneous processes ISMAN.
142432, Moscow Region, Chernogolovka, Academician Osipyan str., 8
A. S. Shchukin
Russian Federation
Researcher, Laboratory of the dynamics of microheterogeneous processes ISMAN.
142432, Moscow Region, Chernogolovka, Academician Osipyan str., 8
References
1. Kock W., Paschen P. Tantalum — processing, properties and applications. J. Miner. Metal. Mater. Soc. 1989. Vol. 41. No. 10. P. 33—39. DOI: dx.doi.org/10.1007/BF03220360.
2. Buckman R.W. New applications for tantalum and tantalum alloys. J. Miner. Metal. Mater. Soc. 2000. Vol. 52. No. 3. P. 40—41. DOI: dx.doi.org/10.1007/s11837-000-0100-6.
3. Martinsen K., Hu S.J., Carlson B.E. Joining of dissimilar materials. CIRP Annals. 2015. Vol. 64. No. 2. P. 679—699. DOI: dx.doi.org/10.1016/j.cirp.2015.05.006.
4. Kah P., Suoranta R., Martikainen J., Magnus C. Techniques for joining dissimilar materials: metals and polymers. Rev. Adv. Mater. Sci. 2014. Vol. 36. P. 152—164.
5. Lin Ya-C, McGinn P.J., Mukasyan A.S. High temperature rapid reactive joining of dissimilar materials: Silicon carbide to an aluminium alloy. J. Eur. Ceram. Soc. 2012. Vol. 32. No. 14. P. 3809— 3818. DOI: dx.doi.org/10.106/j.jeurceramsoc.2012.05.002.
6. Chen S., Meng Q., Zhang N., Cue P., Munir Z.A. In situ synthesis and bonding of Ti—TiAl—TiC/Ni functionally graded materials by field-activated pressure-assisted synthesis process. Mater. Sci. Eng. A. 2012. Vol. 538. No. 1. P. 103—109. DOI: dx.doi.org/10.1016/j.msea.2012.01.020.
7. Tian W.-B., Kita H., Hyuga H., Kondo N. Joining of SiC by Al infiltrated TiC tape: Effect of joining parameters on the microstructure and mechanical properties. J. Eur. Ceram. Soc. 2012. Vol. 32. No. 2. P. 149—156. DOI: dx.doi.org/10.1016/j.jeurceramsoc.2011.08.001.
8. Abbasi-Khazaei B., Jahanbakhsh A., Bakhtiari R. TLP bonding of dissimilar FSX-414/IN-738 system with MBF-80 interlayer: The effect of homogenizing treatment on microstructure and mechanical properties. Mater. Sci. Eng. A. 2016. Vol. 651. No. 1. P. 93—101. DOI: dx.doi.org/10.1016/j.msea.2015.10.087.
9. Shirzadi A.A., Zhub Y., Bhadeshia H.K.D.H. Joining ceramics to metals using metallic foam. Mater. Sci. Eng. A. 2008. Vol. 496. No. 3. P. 501—506. DOI: dx.doi.org/10.1016/j.msea.2008.06.007.
10. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2017. Vol. 62. No. 4. P. 203—239 DOI: dx.doi.org/10.1080/09506608.2016.1243291.
11. Cao H.Q., Wang J., Qi J.L., Lin X.C., Feng J.C. Combustion synthesis of TiAl intermetallics and their simultaneous joining to carbon/carbon composites. Scripta Mater. 2011. Vol. 65. No. 3. P. 261—264. DOI: dx.doi.org/10.1016/j.scriptamat.2011.04.021.
12. Mukasyan A.S., White J.D.E. Combustion joining of refractory materials. Int. J. Self-Propag. High-Temp. Synth. 2007. Vol. 16. No. 3. P. 154—168. DOI: dx.doi.org/10.3103/S1061386207030089.
13. White J.D.E., Simpson A.H., Shteinberg A.S., Mukasyan A.S. Combustion joining of refractory materials: Carbon—carbon composites. J. Mater. Res. 2008. Vol. 23. No. 1. P. 160—169. DOI: dx.doi.org/10.1557/JMR.2008.0008.
14. Kamynina O.K., Vadchenko S.G., Shchukin A.S., Kovalev I.D., Sytschev A.E. SHS joining in the Ti—C—Si system. Int. J. Self-Propag. High-Temp. Synth. 2016. Vol. 25. No. 1. P. 62— 65. DOI: dx.doi.org/10.3103/S1061386216010064.
15. Kamynina O.K., Vadchenko S.G., Shchukin A.S., Kovalev I.D. Multilayer Coatings on Ti substrate by SHS method. Int. J. Self-Propag. High-Temp. Synth. 2016. Vol. 25. No. 4. P. 238— 242. DOI: dx.doi.org/10.3103/S106138621604004X.
16. Yingbiao P., Peng Zhou, Yong Du, KeKe Chang. Thermodynamic evaluation of the C—Ta—Ti system and extrapolation to the C— Ta—Ti—N system. Int. J. Refract. Met. Hard Mater. 2013. Vol. 40. P. 36—42. DOI: dx.doi.org/10.1016/j.ijrmhm.2013.03.012.
17. Levashov E.A., Kurbatkina V.V., Rogachev A.S., Kochetov N.A., Patsera E.I., Sachkova N.V. Characteristic properties of combustion and structure formation in the Ti—Ta—C system. Russ. J. Non-Ferr. Met. 2008. Vol. 49. No. 5. P. 404—413. DOI: dx.doi.org/10.3103/S1067821208050179.
18. Effenberg G., Ilyenko S. Ternary alloy systems: phase diagrams, crystallographic and thermodynamic data refractory metal systems. Landolt-Börnstein — Group IV Physical Chemistry. 2010. Vol. 11E2. P. 619—646. DOI: dx.doi.org/10.1007/978-3-642-02700-0.
19. SGTE. Phase equilibria, crystallographic and thermodynamic data of binary alloys. New Series IV/19B. Landolt-Börnstein — Group IV Physical Chemistry. SpringerVerlag, 2002.
20. Levashov E.A., Kurbatkina V.V., Zaitsev A.A., Rupasov S.I., Patsera E.I., Chernyshev A.A., Zubavichus Ya.V., Veligzhanin. Structure and properties of precipitation-hardening ceramic Ti—Zr—C and Ti—Ta—C materials. Phys. Met. Metallograph. 2010. Vol. 109. No. 1. P. 95—105. DOI: dx.doi.org/10.1134/S0031918X10010102.
21. Zhao N., Xu Y., Wang J., Zhong L., Ovcharenko V.E., Cai X. Microstructure and kinetics study on tantalum carbide coating produced on gray cast iron in situ. Surf. Coat. Technol. 2016. Vol. 286. P. 347—353. DOI: dx.doi.org/10.1016/j.surfcoat.2015.12.057.
22. Zhao N., Xu Y., Zhong L., Yan Y., Song K., Shen L., Ovcharenko V.E. Fabrication, microstructure and abrasive wear characteristics of an in situ tantalum carbide ceramic gradient composite. Ceram. Inter. 2015. Vol. 41. No. 10. Pt. A. P. 12950— 12957. DOI: dx.doi.org/10.1016/j.ceramint.2015.06.138.
23. Massot L., Chamelot P., Winterton P., Taxil P. Preparation of tantalum carbide layers on carbon using the metalliding process. J. Alloys and Compnd. 2009. Vol. 471. No. 1-2. P. 561—566. DOI: dx.doi.org/10.1016/j.jallcom.2008.04.014.
24. Cai X., Xu Y., Liu M., Zhong L., Bai F. Preparation of a gradient nanostructured surface TaC layer-reinforced Fe substrate by in situ reaction. J. Alloys and Compnd. 2017. Vol. 712. P. 204—212. DOI: dx.doi.org/10.1016/j.jallcom.2017.04.081.
Review
For citations:
Kamynina O.K., Vadchenko S.G., Shchukin A.S. SHS-aided joining of ceramics with Ta substrate. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(3):41-45. (In Russ.) https://doi.org/10.17073/1997-308X-2018-3-41-45