Self-propagating high-temperature synthesis in a thin-layer CuO–B–glass system
https://doi.org/10.17073/1997-308X-2018-3-46-54
Abstract
The paper provides experimental research and mathematical models of wave synthesis and thermal explosion in a thin-layer CuO–B–glass system. It is found that burning front propagation has a multi-source behavior and its rate depends on reacting layer thickness by the parabolic law with a maximum at d = 4·10–4 m. Increased reacting layer thickness improves thermal explosion properties in this system, and dilution with an inert component makes it possible to obtain copper coatings featuring good electrical conductivity. X-ray phase analysis and optical microscopy demonstrated that the coating consists of metallic copper drops fused together and surrounded by boron-lead silicate glass melt. Coatings have high electrical conductivity comparable with that of metals. It is found that layer thickness increased over 4·10–4 m results in a significantly reduced layer propagation rate due to initial mixture loosening under the evaporation effect of water vapors and gases adsorbed on powders, and, as a consequence, it results in reduced heat transfer in the burning front. These coatings are not electrically conductive. Mathematical models of wave synthesis and thermal explosion in a thin-layer CuO–B–glass system using macroscopic approximation. Process dynamics are numerically calculated. Theoretical estimates correspond satisfactorily to experimental values. Thermophysical and thermokinetic process constants are determined by the inverse problem method. Experimental data obtained and mathematical models developed made it possible to obtain prototypes of electric film heaters with high electrical conductivity and operating temperature.
About the Authors
A. M. ShulpekovRussian Federation
Cand. Sci. (Tech.), Leader researcher, Researcher department of structural macrokinetics.
634021, Tomsk, Akademicheskii Ave., 10/4
O. V. Lapshin
Russian Federation
Dr. Sci. (Phys.-Math.), Leading researcher, Researcher department of structural macrokinetics.
634021, Tomsk, Akademicheskii Ave., 10/4
References
1. Poate J.M., Tu K.N., Mayer J.W. (eds). Thin filmsinterdiffusion and reactions. N.Y.: Wiley-Interscience, 1978.
2. Dorfman V.F. Sintez tverdotel’nykh struktur [Synthesis of solid structures]. Moscow: Metallurgiya, 1986.
3. Rogachev A.S. Exothermic reaction waves in multilayer nanofilms. Russ. Chem. Rev. 2008. Vol. 77. No. 12. P. 21—37.
4. Ma E., Thompson C.V., Clevenger L.A. Self-propagating explosive reactions in Al/Ni thin films. Appl. Phys. Lett. 1990. Vol. 57. P. 1262—1264.
5. Besnoin E., Cerutti S., Knio O.M. Effect of reactant and product melting on self-propagating reactions in multilayer foils. J. Appl. Phys. 2002. Vol. 92. No. 9. P. 5474—5481.
6. Swiston A.J., Hufnagel T., Weihs T.P. Joining bulk metallic glass using reactive multilayer foils. Scripta Mater. 2003. Vol. 48. P. 1575—1580.
7. Duckham A., Spey S.J., Wang J., Reiss M.E., Weihs T.P., Besnoin E., Knio O.M. Joining of stainless-steel specimens with nanostructured Al/Ni foils. J. Appl. Phys. 2004. Vol. 96. P. 2336—2342.
8. Wang J., Besnoin E., Knio O.M., Weihs T.P. Investigating the effect of applied pressure on reactive multilayer foil joining. Acta Mater. 2004. Vol. 52. P. 5265—5274.
9. Cao J., Feng J.C., Li Z.R. Microstructure and fracture properties of reaction-assisted diffusion bonding of TiAl intermetallic with Al/Ni multilayer foils. J. Alloys and Compd. 2008. Vol. 466. Р. 363—367.
10. Swiston Jr.A.J., Besnoin E., Duckham A., Knio O.M., Weihs T.P., Hufnagel T. Thermal and microstructural effects of welding metallic glasses by self-propagating reactions in multilayer foils. Acta Mater. 2005. Vol. 53. P. 3713—3719.
11. Lehnert T., Tixier S., Boni P., Gotthardt R. A new fabrication process for Ni — Ti shape memory thin films. Mater. Sci. Eng. 1999. Vol. A273-275. P. 713—716.
12. Fu Y., Du H., Huang W., Hu M. TiNi-based thin films in MEMS applications: a review. Sensors and Actuators A-Physical. 2004. Vol. 112. P. 395—408.
13. Merzhanov A.G., Borovinskaya I.P., Prokudina V.K., Nikulina N.A. Efficiency of the SHS powders and production method. Int. J. SHS. 1994. Vol. 3. No. 4. P. 353—370.
14. Arzin A.P., Voronin V.P., Guzeev V.V., Kirdyashkin A.I., Maksimov Yu.M., Rudenskii G.E., Khorobraya E.G., Shul’pekov A.M. Nagrevatel’nyi element [Heating element]: Pat. 55241 (RF). 2006.
15. Merzhanov A.G. SHS technology. Adv. Mater. 1992. Vol. 4. No. 4. P. 294—295.
16. Merzhanov A.G., Mukas’yan A.S. Tverdoe plamya [Solid flame]. Moscow: Torus Press, 2007.
17. Puszynski J.A., Degraw A. Past and current accomplishments in production of ceramic powders and structures by self-propagating high-temperature synthesis method. Adv. Sci. Technol. 2010. Vol. 63. P. 228—235.
18. Borovinskaya I.P., Gromov A.A., Levashov E.A., Maksimov Yu.M., Mukasyan A.S., Rogachev A.S. Concise encyclopedia of self-propagating high-temperature synthesis: History, theory, technology and products. Elsevier, 2017.
19. Merzhanov A.G. Self-propagating high-temperature synthesis: Twenty years of research and findings. In: Combustion and plasma synthesis of high-temperature materials. N.Y.: VCH Publishers Inc., 1990. P. 1—53.
20. Merzhanov A.G., Rogachev A.S. Structural macrokinetics of SHS processes. Pure Applied Chem. 1992. Vol. 64. No. 7. P. 941—953.
21. FrankKamenetskii D.A. Diffuziya i teploperedacha v khimicheskoi kinetike [Diffusion and heat transfer in chemical kinetics]. Moscow: Nauka, 1967.
22. Babichev А.P., Babushkina N.А., Bratkovskij А.M. et al. (Eds. Grigor’ev S.G., Meilikhov E.Z.). Fizicheskie velichiny: Spravochnik [Physical quantities: Reference book]. Moscow: Energoatomizdat, 1991.
23. Smitlz K.J. Metally: Spravochnik [Metals: Reference]. Moscow: Metallurgiya, 1980.
24. Chirkin V.S. Teplofizicheskie svoistva materialov: Spravochnik [Thermophysical properties of materials: Reference]. Moscow: Fizmatlit, 1959.
25. Shkadinskii K.G., Khaikin B.I., Merzhanov A.G. Rasprostranenie pul’siruyushchego fronta ekzotermicheskoi reaktsii v kondensirovannoi faze [Propagation of a pulsating exothermic reaction front in the condensed phase]. Fizika goreniya i vzryva. 1971. Vol. 7. No. 1. P. 19—28.
Review
For citations:
Shulpekov A.M., Lapshin O.V. Self-propagating high-temperature synthesis in a thin-layer CuO–B–glass system. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(3):46-54. (In Russ.) https://doi.org/10.17073/1997-308X-2018-3-46-54