Study into the effect of strengthening phase amount in aluminum-based dispersion-hardened composite on failure process regularities
https://doi.org/10.17073/1997-308X-2018-3-55-63
Abstract
The paper presents the results obtained when studying static tensile strength of aluminum-based cast dispersion-hardened composites with a different content of the Al2O3 strengthening phase. The investigated materials are manufactured using a fundamentally different technology for the production of cast dispersion-hardened aluminum composites based on the process of burning out the aluminum melt when interacting with oxygen or an oxygen-nitrogen mixture. The fractographic patterns of static failure surfaces are stidued on samples failed at maximum stress values. It is found that samples with the low Al2O3 content have a purely viscous failure pattern consisting mainly of a single fibrous zone. The fracture pattern shows a radial area with a solid phase doubled, while a tripled Al2O3 content causes viscous failure by the separation and shear mechanism alternated with brittle cleavage failure signs. The fracture profile diagrams of samples containing 10 % and 30 % of solid phase inclusions reveal no sharp relief differences, but demonstrate a completely different failure pattern. However, in both cases profile diagrams feature no any abrupt jumps in the relief or extreme profile values, so it is possible to assert that failure processes are stable. This is not true for the 20 % Al2O3 sample failure showing a rather significant one-time drop. Optical microscopy reveals features of changes in the failure surface relief and the difference in the location and number of fracture origins in the studied samples.
About the Authors
V. V. MylnikovRussian Federation
Cand. Sci. (Tech.), Associate professor, Department «Technology of construction», Engineering faculty.
603950, Nizhni Novgorod, Ilinskaya str., 65
A. D. Romanov
Russian Federation
Research assistant, Development center of special vehicles NNSTU.
603950, Nizhny Novgorod, Minina str, 24
E. A. Chernyshov
Russian Federation
Dr. Sci. (Tech.)., Prof., Department «Metallurgical technologies and equipment», NNSTU.
603950, Nizhny Novgorod, Minina str, 24
References
1. Agureev L.E., Kostikov V.I., Eremeeva Zh.V., Barmin A.A., Savushkina S.V., Ivanov B.S. Aluminum composites with small nanoparticles additions: Corrosion resistance. Mech., Mater. Sci. Eng. J. 2016. No. 2. Р. 23—28.
2. Agureev L.E., Rizakhanov R.N., Barmin A.A., Savushkina S.V., Rudshtein R.I. Dispersno-uprochnennyi kompozitsionnyi material na osnove alyuminievoi matritsy i sposob ego polucheniya [Dispersion-strengthened composite material based on aluminum matrix and method for its production]: Pat. 2595080 (RF). 2015.
3. Agureev L.E., Kostikov V.I., Rizakhanov R.N., Eremeeva Zh.V., Barmin A.A., Savushkina S.V., Ashmarin A.A., Ivanov B.S., Rudshtein R.I. Aluminum powder composites reinforced by oxide nanoparticles used as microadditives. Int. J. Nanomech. Sci. Technol. 2014. Vol. 5. No. 3. P. 201—211.
4. Belov N.A., Belov V.D., Alabin A.N., Mishurov S.S. New generation of economically alloyed aluminum alloys. Metallurgist. 2010. Vol. 54. No. 5-6. P. 311—316.
5. Kurganova Y.A., Chernyshova T.A., Kobeleva L.I., Kurganov S.V. Service properties of aluminum-matrix precipitation-hardenet composite materials and the prospects of their use on the modern structural material market. Russ. Metal. (Metally). 2011. Vol. 2011. No. 7. P. 663—666.
6. Mitra R., Mahagan Y.R. Interfaces in discontinuously reinforced metal matrix composites: an overview. Bull. Mater. Sci. 1995. Vol. 18. No. 4. P. 405—434.
7. Hosking F.M, Portillo F., Wunderlin R., Mehrabian R. Composites of aluminum alloys; fabrication and wear behavior. J. Mater. Sci. 1982. Vol. 17. No. 2. P. 477—498.
8. Rohatgi P. Cast aluminum matrix composites for automotive applications. JOM. 1991. Vol. 43. No. 4. P. 10—16.
9. Goswami R.K., Dhar A., Srivastava A.K., Gurta A.K. Effect of deformation and ceramic reinforcement on work hardening behavior of hot extruded 2124 Al—SiC metal matrix composites. J. Compos. Mater. 1999. Vol. 33. No. 13. P. 1160—1172.
10. Olmos L., Martin C.L., Bouvard D. Sintering of mixtures of powders: experiments and modelling. Powder Technol. 2009. Vol. 190. P. 134—140.
11. Chen Z., Takeda T., Ikeda K., Murakami T. The influence of powder particle size on microstructural evolution of metal-ceramic composite. Scripta Matter. 2000. Vol. 43. P. 1103—1109.
12. Sebo P., Kavecky S., Stefanik P. Wettability of zirconia-coated carbon by aluminium. J. Mater. Sci. Lett. 1994. Vol. 13. P. 592—593.
13. Muolo M.L., Passerone V.A., Passerone D. Oxygen influence on ceramics wettability by liquid metals Ag/α-Al2O3-Experiments and Modelling. Mater. Sci. Eng. 2008. Vol. 3(495). P. 153—158.
14. Liu Y. B., Lim S. C., Lu L., Lai M.O. Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques. J. Mater. Sci. 1994. Vol. 29. P. 1999—2007.
15. Moyal J.S., Lopez-Esteban S., Pecharroma’n C. The challenge of ceramic/metal microcomposites and nanocomposites. Progress in Mater. Sci. 2007. Vol. 52. P. 1017—1090.
16. Gorbunov P.Z., Gal’ V.V. Perspektivnye dispersno-uprochnennye kompozitsionnye materialy [Promising dispersion-strengthened composite materials]. Proizvodstvenno-tekhnicheskii opyt. 1993. No. 1-2. P. 81—84.
17. Kablov E.N., Ospennikova O.G., Lomberg, B.S. Strategic trends of development of structural materials and technologies of their processing for modern and future aircraft engines. Paton Welding J. 2013. No. 11. P. 23—32.
18. Romanov A.D., Chernyshov E.A., Myl’nikov V.V., Romanova E.A. Razrabotka tekhnologii polucheniya kompozitsionnogo materiala na osnove alyuminiya [Development of technology of obtaining composite material based on aluminum]. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovanii. 2014. No. 12-2. Р. 176—179.
19. Chernyshov E.A., Lonchakov S.Z., Romanov A.D., Myl’nikov V.V., Romanova E.A. Issledovanie mikrostruktury alyumomatrichnogo dispersnonapolnennogo litogo kompozitsionnogo materiala, poluchennogo metodom vnutrennego okisleniya [The study of the microstructure aluminating particulate-filled cast composite material obtained by internal oxidation]. Perspektivnye materialy. 2016. No. 9. Р. 78—83.
20. Chernyshov E.A., Myl’nikov V.V., Romanov A.D., Romanova E.A. Razrabotka tekhnologii polucheniya alyumomatrichnogo disperstno-napolnennogo litogo kompozitsionnogo materiala s kontrolem razmerov faz uprochneniya. In: Trudy VI Mezhdunar. konf. «Deformatsiya i razrushenie materialov i nanomaterialov» [The development of technology for aluminating disperse-filled molded composite material with control of dimensions of the phase hardening. In: Proc. VI International Conference «Deformation and fracture of materials and nanomaterials» (Moscow, November 10—13, 2015)]. Moscow: IMET RAN, 2015. P. 667—669.
21. Chernyshov E.A., Myl’nikov V.V., Romanov A.D., Romanova E.A. Razrabotka metoda polucheniya litykh mnogokomponentnykh sistem s zadannym razmerom i raspredeleniem nemetallicheskikh uprochnyayushchikh chastits [Develop a method of obtaining castings of multicomponent systems with a given size and distribution of nonmetallic reinforcing particles]. Sovremennye problemy nauki i obrazovaniya. 2014. No. 6. Р. 324.
22. Khedera A.R.I., Marahleh G.S., Al-Jamea D.M.K. Strengthening of aluminum by SiC, Al2O3 and MgO. Jordan J. Mech. Industr. Eng. 2011. Vol. 5. No. 6. Р. 533—541.
Review
For citations:
Mylnikov V.V., Romanov A.D., Chernyshov E.A. Study into the effect of strengthening phase amount in aluminum-based dispersion-hardened composite on failure process regularities. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(3):55-63. (In Russ.) https://doi.org/10.17073/1997-308X-2018-3-55-63