Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Comparative study of structural phase condition and mechanical properties of Ni–Cr(X) и Fe–Cr(Х) heat-resistant alloys obtained using additive technologies

https://doi.org/10.17073/1997-308X-2018-3-76-86

Abstract

The comparative study covers the features of formation, thermal stability of structure and mechanical properties of heatresistant Ni and Fe based alloys obtained using additive technologies (AT) by direct metal laser sintering, selective laser melting. It is found that alloys obtained by direct metal laser sintering have a cellular structure formed with small pores up to 200 nm in size, in contrast to alloys obtained by selective laser melting having elements with a globular and lamellar morphology and not completely melted areas as well as large pores about 5 μm in size. The study reveals a possible effect of nanophase hardening due to the presence of nanosized particles of chromium silicides in the material. A comparative analysis of the mechanical properties of studied materials is carried out. It is shown that the iron-based alloys have higher strength and lower ductility compared to nickel alloys. All studied samples obtained by selective laser melting demonstrate higher strength characteristics in comparison with alloys obtained by laser metal deposition. As a result of short-term annealing at a temperature of 900–1000 °C for 1 h leads to a significant reduction in the plasticity and strength of iron-based AT alloys during tensile and compression tests at room and elevated temperatures. During compression tests at t = 900 °C, iron-and nickel-based alloys obtained by laser metal deposition have similar strength characteristics. Unlike iron-based alloys, additional annealing of nickel-based AT alloys has virtually no impact on its strength properties.

About the Authors

Yu. R. Kolobov
Belgorod State National Research University; Institute of Problems of Chemical Physics (IPCP) of RAS
Russian Federation

Dr. Sci. (Phys.-Math.), Prof., Head of the Department of the nanostructured materials and nanotechnologies on the basis of the Scientific Center in Chernogolovka of RAS;  Head of the Laboratory of the physico-chemical engineering of composite materials.

308034, Belgorod, Koroleva str., 2а; 142432, Moscow reg., Chernogolovka, Academician Semenov av., 1



A. N. Prokhorov
Central Institute of Aviation Motors
Russian Federation

Cand. Sci. (Tech.), Deputy General Director, Director of the Research center «Aerospace Engines and Chemmotology».

111116, Moscow, Aviamotornaya str. 2



S. S. Manokhin
Institute of Problems of Chemical Physics (IPCP) of RAS
Russian Federation

Cand. Sci. (Tech.), Senior researcher, Laboratory of the physico-chemical engineering of composite materials, IPCP of RAS.

142432, Moscow reg., Chernogolovka, Academician Semenov av., 1



A. Yu. Tokmacheva-Kolobova
Institute of Problems of Chemical Physics (IPCP) of RAS
Russian Federation

Postgraduate, NUST «MISIS», Assistant of Laboratory of the physico-chemical engineering of composite materials IPCP of RAS.

142432, Moscow reg., Chernogolovka, Academician Semenov av., 1



D. I. Serebryakov
Central Institute of Aviation Motors
Russian Federation

Head of the Sector aerospace engine department CIAM.

111116, Moscow, Aviamotornaya str. 2



V. V. Afanasiev
Central Institute of Aviation Motors
Russian Federation

Leading expert, Aerospace engine department CIAM.

111116, Moscow, Aviamotornaya str. 2



References

1. Kolobov Yu. R., Kablov E.N., Kozlov E.V., Koneva N.A., Povarova K.B., Grabovetckaya G.P., Buntushkin V.P., Bazyleva O.A., Muboyadzhyan S.A., Budinovskii S.A. Struktura i svoistva intermetallidnykh materialov s nanofaznym uprochneniem [Structure and properties of intermetallic materials with nanophase hardening]. Moscow: MISIS, 2008.

2. Kolobov Yu.R. Diffuzionno-kontroliruemye protcessy na granitcakh zeren i plastichnost metallicheskikh polikristallov [Diffusion-controlled processes at grain boundaries and plasticity of metal polycrystals]. Novosibirsk: Nauka, 1998.

3. Lomberg B.S., Ovsepian S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlia detalei gazoturbinnykh dvigatelei [High temperature heat resistant nickel alloys for gas turbine engine parts]. In: Aviatcionnye materialy i tekhnologii (Ed. Kablov E.N.). Moscow: VIAM, 2012. P. 52—57.

4. Kablov E.N. Additivnye tekhnologii — dominanta natcionalnoi tekhnologicheskoi initciativy [Additive technologies — a dominant feature of the national technology initiative]. Intellekt i tekhnologii. 2015. No. 2. P. 52—55.

5. Lewandowski J.J., Seifi M. Metal additive manufacturing: A review of mechanical properties. Annu. Rev. Mater. Res. 2016. Vol. 46. No. 1. P. 151—186.

6. Smith D. H., Bicknell J., Jorgensen L., Patterson B.M., Cordes N.L., Tsukrov I., Knezevic M. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718. Mater. Characterization. 2016. Vol. 113. P. 1—9.

7. Wu M.W., Lai P.H., Chen J.K. Anisotropy in the impact toughness of selective laser melted Ti—6Al—4V alloy. Mater. Sci. Eng. A. 2016. Vol. 650. P. 295—299.

8. Zhao X., Chen J., Lin X., Huang W. Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater. Sci. Eng. A. 2008. Vol. 478. P. 119—124.

9. Gribbin S., Bicknell J., Jorgensen L., Tsukrov I., Knezevic M. Low cycle fatigue behavior of direct metal laser sintered Inconel alloy 718. Int. J. Fatig. 2016. Vol. 93. P. 156— 167.

10. Sames W.J., List F.A., Pannala S., Dehoff R.R., Babu S.S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016. Vol. 61. No. 5. P. 315—360.

11. Wu M.W., Lai P.H. The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti—6Al—4V alloy. Mater. Sci. Eng. A. 2016. Vol. 658. P. 429—438.

12. Qiu C., Panwisawas C., Ward M., Basoalto H.C., Brooks J.W., Attallah M.M. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater. 2015. Vol. 96. P. 72—79.

13. Cunningham R., Narra S.P., Ozturk T., Beuth J., Rollett A.D. Evaluating the effect of processing parameters on porosity in electron beam melted Ti—6Al—4V via synchrotron X-ray microtomography. JOM. 2016. Vol. 68. No. 3. P. 765—771.

14. Konecna R., Nicoletto G., Kunz L., Baca A. Microstructure and directional fatigue behavior of Inconel 718 produced by selective laser melting. Procedia Structural Integrity. 2016. Vol. 2. P. 2381—2388.

15. Scott-Emuakpor O., Schwartz J., George T., Holycross C., Cross C., Slater J. Bending fatigue life characterisation of direct metal laser sintering nickel alloy 718. Fatigue Fract. Eng. Mater. Struct. 2015. Vol. 38. P. 1105—1117.

16. Tillmann W., Schaak C., Nellesen J., Schaper M., Aydinöz M.E., Niendorf T. Functional encapsulation of laser melted Inconel 718 by Arc-PVD and HVOF for post compacting by hot isostatic pressing. Powder Metallurgy. 2015. Vol. 58. P. 259—264.

17. Aydinöz M.E., Brenne F., Schaper M., Schaak C., Tillmann W., Nellesen J., Niendorf T. On the microstructural and mechanical properties of post-treated additively manufactured Inconel718 superalloy under quasi-static and cyclic loading. Mater. Sci. Eng. A. 2016. Vol. 669. P. 246—258.

18. Bambach M., Sizova I., Silze F., Schnick M. Hot workability and microstructure evolution of the nickel-based superalloy Inconel 718 produced by laser metal deposition. J. Alloys and Compd. 2018. Vol. 740. P. 278—287.

19. Lukina E.A., Bazaleeva K.O., Petrushin N.V., Zai`tcev D.V. Issledovanie zakonomernosti obrazovaniia zerennoi struktury splava sistemy legirovaniia Ni—Al—W—Co— Nb—Cr—Ti—Mo, sintezirovannogo metodom SLS, v zavisimosti ot parametrov lazernogo puchka, termoobrabotki i GIP [Study of the formation pattern of the grain structure of the alloy system Ni—Al—W—Co—Nb—Cr— Ti—Mo, synthesized by SLS, depending on the parameters of the laser beam, heat treatment and HIP]. In: Proc. Inter. Sci. and Tech. Conf. «Beam Technologoies and Laser Application» (St. Petersburg, 21—24 September 2015)]. St. Petersburg: Peter the Great St. Petersburg Polytechnic University, 2016. P. 307—315.

20. Bazaleeva K.O., TCvetkova E.V., Balakirev E.V. Protcessy rekristallizatcii austenitnogo splava, poluchennogo metodom selektivnogo lazernogo plavleniia [The process of recrystallization of the austenitic alloy obtained by the method of selective laser melting]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie. 2016. Vol. 111. No. 5. P. 117—127.

21. Bazaleeva K.O., Tcvetkova E.V., Smurov I.Iu., Iadroitcev I.A., Bazaleev E.V., Kostiuk Yu.G. Iacheistaia struktura v austenitnykh splavakh, poluchennykh metodom selektivnogo lazernogo plavleniia [Cellular structure in austenitic alloys obtained by selective laser melting]. Perspektivnye materialy. 2014. No. 3. P. 55—62.


Review

For citations:


Kolobov Yu.R., Prokhorov A.N., Manokhin S.S., Tokmacheva-Kolobova A.Yu., Serebryakov D.I., Afanasiev V.V. Comparative study of structural phase condition and mechanical properties of Ni–Cr(X) и Fe–Cr(Х) heat-resistant alloys obtained using additive technologies. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(3):76-86. (In Russ.) https://doi.org/10.17073/1997-308X-2018-3-76-86

Views: 1022


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)