Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Self-propagating high-temperature synthesis of silicon carbide nanofibers

https://doi.org/10.17073/1997-308X-2020-2-14-20

Abstract

The article presents the results of studies into the gas-phase synthesis of silicon carbide fibers using silicon powder, polytetrafluoroethylene (PTFE) energy additive and polyethylene (PE) powder by self-propagating high-temperature synthesis (SHS). Stoichiometric mixtures were used for experiments. Green mixture components were mixed in a 3 liter drum with tungsten carbide balls for 30 min. The green mixture weight was 500 g. Experiments were conducted in the SHS-30 industrial reactor. Silicon + PTFE mixture combustion was accompanied by a rapid increase in pressure from 0.5 to 4.0 MPa in less than 1 s, and a relatively rapid pressure drop to 1.5 MPa in 1.5 min. The combustion rate was more than 50 cm/s. It was established that there was a spread of the mixture components during the combustion due to the high combustion rate and intense gas emission. A cottonlike material of light blue color was obtained; it consisted of 100-500 nm thick silicon carbide fibers. The maximum pressure in the reactor reached 3.1 MPa in 1 s during the silicon + PTFE + PE combustion and then decreased to 1.5 MPa in 3 min. The combustion rate was about 40 cm/s. The entire volume of the reactor was filled with blue-grey cotton-like silicon carbide and SiC powder with equiaxed 0.5-3,0 μm particles merged into conglomerates. Needle-like silicon crystals were formed in the transition layer between the powder and silicon carbide fibers. The results of experiments proved the possibility of obtaining silicon carbide nanofibers in relatively large quantities during the combustion of exothermic mixtures.

About the Authors

V. V. Zakorzhevsky
Merzhanov Institute of Structural Macrokinetics and Materials Science of Russian Academy of Sciences (ISMAN)
Russian Federation

Cand. Sci. (Tech.), Leading research scientist, Laboratory of self-propagating high-temperature synthesis (SHS), Merzhanov Institute of Structural Macrokinetics and Materials Science of Russian Academy of Sciences (ISMAN).

142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8.



V. E. Loryan
Merzhanov Institute of Structural Macrokinetics and Materials Science of Russian Academy of Sciences (ISMAN)
Russian Federation

Dr. Sci. (Tech.), Head of Laboratory of SHS, ISMAN.

142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8.



T. G. Akopdzhanyan
Merzhanov Institute of Structural Macrokinetics and Materials Science of Russian Academy of Sciences (ISMAN)
Russian Federation

Cand. Sci. (Tech.), Research scientist, Laboratory of SHS, ISMAN.

142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8.



References

1. Abderrazak H, Hmida E. Silicon earbide: Synthesis and properties. In: Properties and Applications of Silicon Carbide (Ed. by R. Gerhardt). Rijeka, Croatia: Publ. In Tech., 2011. Р. 361—388.

2. Fantozzi G., Reynaud P. Mechanical behavior of SiC fiber-reinforced ceramic matrix composites. Compr. Hard Mater. Ceram. 2014. No. 2. P. 345—366.

3. Young-Hang Koh, Hae-Won Kim, Hyoun-Ee Kim. Microstructural evolution and mechanical properties of Si3N4— SiC (nanoparticle)—Si3N4 (whisker) composites. J. Mater. Res. 2000. Vol.15. No. 2. P. 364—368.

4. Martynenko V.M., Borovinskaya I.P. Thermodynamic analysis of silicon carbide synthesis under a combustion regime. In: Proc. III All-Union Conf. on Technol. Combust. Chernogolovka: DICP AC USSR, 1978. P. 180—181.

5. Pampuch R., Stobierski L., Liz J., Raczka M. Solid combustion synthesis of β-SiC powder. Mater. Res. Bull. 1987. Vol. 22. P. 1225—1231.

6. Kharatyan S.L., Nersisyan H.H. Combution synthesis of silicon carbade unde oxidative activation conditions. Int. J. SHS. 1994. Vol. 3. No. 1. P. 17—25.

7. Mukasyan A.S., Merzhanov A.G., Martinenko V.M., Borovinskaya I.P., Blinov M.Yu. Mechanism and principles of silicon combustion in nitrogen. Combust. Explos. Shock Waves. 1986. Vol. 22. No. 5. P. 534—540.

8. Martynenko V.V. Self-propagating high temperature synthesis of silicon carbide: Abstr. of the diss. of PhD. Chernogolovka: Branch of Institute of Chemical Physics. USSR Academy of Sciences,1984 (In Russ.).

9. Yamada O., Hirao K., Koizumi M., Miyamoto Y. Combustion synthesis of silicon carbide in nitrogen atmosphere. J. Amer. Ceram. Soc. 1989. Vol. 72. No. 9 1735—1738.

10. Agrafiotis Ch.C., Lis J., Puszynski J.A., Hlavacek V. Combustion synthesis of silicon carbide in nitrogen atmosphere. J . Amer. Ceram. Soc. Vol. 72. No. 9. P. 1735— 1738.

11. Kata D., Lis J., Pampuch R., Stobierski L. Preparation of fine powders in the Si—C—N system using SHS method. Int. J. SHS. 1998. Vol. 7. No. 4. Р. 475—487.

12. Nersisyan G.A., Nikogosov V.N., Kharatyan S.L., Merzhanov A.G. Chemical transformation mechanism and combustion regimes in the system silicon-carbon-fluoroplast. Combustion Explosion and Shock Wave. 1991. Vol. 27. No. 6. P. 729—724.

13. Nersisyan H.H., Kharatyan S.L. Combustion of carbide systems under the conditions of chemical stimulation. Int. J. SHS. 1995. Vol. 4. No. 2. P. 159—170.

14. Huczko A., Osica M., Rutkowska A., Bystrzejewski M., Lan ge H, Cudzito S. A self-assembly SHS approach to form silicon carbide nanofibres. J. Phys.: Condens. Mater. 2007. Vol. 19. P. 1—10.

15. Danelska A., Gierlotka S., Stelmakh S., Soszynski M. Postsynthesis treatment of silicon carbide nanowires obtained in combustion synthesis Mater. Sci. Semicond. Process. 2016. Vol. 42. P. 326—333.

16. Real C., Alcal D., M. Criado J. Synthesis of silicon carbide of silica gel by means of the whiskers from carbothermal reduction constant rate thermal analysis (CRTA) method. Solid State Ionics. 1997. Vol. 95. P. 29—32.

17. Guangyi Yang, Renbing Wu, Jianjun Chen, Yi Pan, Rui Zhai, Lingling Wu, Jing Lin. Growth of SiC nanowires-nanorods using a Fe—Si solution method. Nanotechnology. 2007. Vol. 18. No. 155601.

18. Ahn H.S., Choi D.J. Fabrication of silicon carbide whiskers and whisker-containing composite coatings without using a metallic catalyst. Surf. Coat. Technol. 2002. Vol. 154. No. 2-3. P. 276—281.

19. Fu Q-G., Li H.J., Shi X.H., Li K.Z., Wei J., Hu Z.B. Synthesis of silicon carbide by CVD without using a metallic catalyst. Mater. Chem. Phys. 2006. Vol. 100. P. 108—111.

20. Salinas A., Altecor A., Lizcano M., Lozano K. Production of b-silicon carbide nanofibers using the forcespinning method. J. Ceram. Sci. Tech. 2016. 07 [03]. P. 229—234. DOI: 10.4416/JCST2016-00026 available online at: http://www.ceramic-science.com.

21. Zhengfang X., Jiaxi N., Zhaohui C. Synthesis and characterization of molybdenum-modified polycarbosilane for SiC(Mo) ceramics. J. Appl. Pol. Sci. 2012. Vol. 128. P. 1834—1841.

22. Patel N., Kawai R., Oya A. Preparation of silicon carbide nanofibers by use of polymer blend technique. J. Mater. Sci. 2004. Vol. 39. P. 691—693.

23. Fallahian S.R., Karamian E., Monsh A. SEM and TEM studies of в-SiC nano-whiskers microstructures produced at differenttemperatures. Ceram. Mater. 2011. Vol. 63. No. 2. P. 256—260.


Review

For citations:


Zakorzhevsky V.V., Loryan V.E., Akopdzhanyan T.G. Self-propagating high-temperature synthesis of silicon carbide nanofibers. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(2):14-20. (In Russ.) https://doi.org/10.17073/1997-308X-2020-2-14-20

Views: 997


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)