Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Synthesis of inorganic cobalt-containing spinel pigments by SHS method

https://doi.org/10.17073/1997-308X-2020-2-21-28

Abstract

Cobalt-containing spinel-type ultramarine pigments were obtained by self-propagating high-temperature synthesis (SHS) in the ZnO-MgO-CoO-Al(OH)3-Al system. Starting components were oxides of cobalt (Co3O4) and zinc (ZnO), aluminum hydroxide (Al(OH)3), and 6-water magnesium nitrate (Mg(NO3)2•6H2O). ASD-4 grade aluminum powder was used as a reducing metal. The samples with a diameter of 40 mm were synthesized. The combustion wave velocity was 1-2 mm/s, and the maximum synthesis temperature was 1180 °С. Parallel aluminum oxidation and aluminothermic reactions were the leading reactions providing the synthesis of spinel-based ceramic pigments in the layer-by-layer combustion mode. They result in charge self-heating up to the synthesis temperatures of spinels that are also formed with the release of heat. The fast destruction of Al(OH)3 upon heating leads to the formation of active submicron y-A12O3, which is involved in the further synthesis of finely dispersed spinel. Endothermic effects associated with Al(OH)3 decomposition lead to burning sample cooling. This complicates the SHS implementation and requires additional heat supply. Gases emitted during thermal decomposition loosen the charge in the heating zone and reduce the maximum combustion temperature that allows solid-phase synthesis without any melting of the product to obtain it in a finely dispersed state. The microstructural analysis of samples by scanning electron microscopy confirmed the finely dispersed structure of pigments. IR spectroscopy and X-ray diffraction analysis revealed spinel structures. The paper presents the particle size distribution histograms for starting Al(OH)3, Al(OH)3 after heating, and synthesized spinels. It was shown that the pigment contains the maximum number of 903 nm particles. Therefore, obtaining finely dispersed spinel-type pigments by solid-phase synthesis directly in the combustion wave greatly simplifies their production process due to the absence of a grinding stage.

About the Authors

N. I. Radishevskaya
Tomsk scientific centre SB RAS
Russian Federation

Cand. Sci. (Tech.), Senior research, Department of structural macrokinetics, Tomsk scientific centre SB RAS.

634055, Tomsk, Akademicheskii PR., 10/3.



A. Yu. Nazarova
Tomsk scientific centre SB RAS
Russian Federation

Cand. Sci. (Tech.), Research scientist, Department of structural macrokinetics, Tomsk scientific centre SB RAS.

634055, Tomsk, Akademicheskii PR., 10/3.



O. V. Lvov
Tomsk scientific centre SB RAS
Russian Federation

Junior researcher, Department of structural macrokinetics, Tomsk scientific centre SB RAS.

634055, Tomsk, Akademicheskii PR., 10/3.



N. G. Kasatsky
Tomsk scientific centre SB RAS
Russian Federation

Senior research, Department of structural macrokinetics, Tomsk scientific centre SB RAS.

634055, Tomsk, Akademicheskii PR., 10/3.



References

1. Merzhanov AG. The concept of development of SHS as a field of scientific and technical progress. Chernogolovka: Territoriya, 2003 (In Russ.).

2. Radishevskaya N.I., Lvov O.V., Kasatsky N.G., Chars-kaya A.Yu., Lepakova O.K., Hitler V.D., Naiborodenko Yu.S. Features of se1f-propagating high-temperature synthesis of spine1 pigments. Fizika goreniya i vzryva. 2012. Vo1. 48. No. 1. P. 64—70 (In Russ.).

3. Myasoedov B.F., Grigoryan A.E. Se1f-Propagating high-temperature synthesis conquers the wor1d. Vestnik Rossiyskoy akademii nauk. 2008. Vo1. 78. No. 6. P. 549—553 (In Russ.).

4. Merzhanov A.G. SAF on the way to industria1ization. Nauka — proizvodstvu. 2006. No. 2. P. 19—24 (In Russ.).

5. Kharashvili E.Sh., Harashvili E.Sh. Trends in deve1oping ceramic pigments. Glass and Ceramics (Eng. trans. Steklo i Keramika). 1985. Vo1. 42. No. 9-10. P. 459—463.

6. Varma A., Diakov V., Shafirovic E. Heterogeneous combustion: Recent deve1opments and new opportunities for chemica1 engineers. AIChE Journal. 2005. Vo1. 51. No. 11. P. 2876—2884. DOI: 10.1002/aic.10697.

7. Gorshkov V.A., Miloserdov P.A., Yukhvid V.I., Sachkova N.V., Kovalev I.D. Preparation of magnesium a1uminate spine1 by se1f-propagating high-temperature synthesis me-ta11urgy methods. Inoarg. Mater. 2017. Vo1. 53. No. 10. P. 1046—1052.

8. Merzhanov A.G. SHS on the pathway to industria1ization. Int. J. Self-Propag. High-Temp. Synth. 2001. Vo1. 10. No. 2. P. 237—248. COI: 1:CAS:528:DC%2BD3MXpt1eis74%3D.

9. Yukhvid V.I. High-temperature 1iquid-phase SHS processes: new trends and task objectives. Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities' Proceedings Non-Ferrous Metallurgy). 2006. No. 5. P. 62—78 (In Russ.).

10. Aruna S.T., Mukasyan A.S. Combustion synthesis and nanomateria1s. Current Opinion in Solid State and Materials Science. 2008. Vo1. 12. No. 3. P. 44—50. DOI: 10.1016/j.cossms.2008.12.002.

11. Maksimov Yu.M. Se1f-рropagating high-temperature synthesis in Tomsk scientific center. In: Synthesis and consolidation of powder materials: Abstr. Inter. conf. (October 23—26, 2018). Moscow: Torus Press, 2018. P. 472—476 (In Russ.).

12. Patil K. C., HegdM. S., Rattan T., Aruna S.T. Chemistry of nanocrystalline oxide materials: Combustion synthesis, properties and applications. Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications. 2008. P. 1—345. DOI: 10.1142/9789812793157_fmatter.

13. Casado P.G., Rasines I. The series of spinels Co3— sAlsO4 (0 < s < 2): Study of Co2 AlO4. J. Solid State Chem. 1984. Vol. 52. No. 2. P. 187—190. DOI: 10.1016/0022-4596(84)90190-7.

14. Ali A.A., Ahmed I.S. Sol-gel auto-combustion fabrication and optical properties of cobalt orthosilicate: Utilization as coloring agent in polymer and ceramic. Mater. Chem. Phys. 2019. Vol. 238. Art. No. 121888.

15. Hwang C.-C., Wu T.-Y., Wan J., Tsa J.-S. Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders. Mater. Sci. Eng. B. 2004. Vol. 111. No. 1. P. 49—56. DOI: 10.1016/j.mseb.2004.03.023.

16. Dimitrov T.I., Ibreva T.H., Markovska I.G. Synthesis and investigation of ceramic pigments in the system MnO— ZnO—SiO2. Glass and Ceramics. 2019. Vol.76. No. 5-6. P. 216—218.

17. Yang G.-Q., Han B., Sun Z.-T., Yan L.-M., Wang X.-Y. Preparation and characterization of brown nanometer pigment with spinel structure. Dyes and Pigments. 2002. Vol. 55. No. 1. P. 9—16. DOI: 10.1016/S0143-7208(02)00056-6.

18. Salem S., Jazayeri S.H., Bondioli F., Allahverdi A., Shirva-ni M., Ferrari A.M. CoAl2O4 nano pigment obtained by combustion synthesis. Int. J. Appl. Ceram. Technol. 2012. Vol. 9. No. 5. P. 968—978. DOI: 10.1111/j.1744-7402.2011.02704.x.

19. Maslennikova G.N, Pishch I.V. Ceramic pigments. Moscow: RIF «Stroimaterialy», 2009 (In Russ.).

20. Yoneda M., Gotoh K., Nakanishi M., Fujii T., Nomura T. Influence of aluminum source on the color tone of cobalt blue pigment. Powder Technol. 2018. Vol. 323. P. 574—580.

21. Noskov A.S. Industrial catalysis in lectures. No. 8. Moscow: Kalvis, 2009 (In Russ.).

22. Boldyrev A.I. Infrared spectra of minerals. Moscow: Nedra, 1976 (In Russ.).

23. Stangar U.L., Orel B., Krajnc M. Preparation and spectroscopic characterization of blue CoAl2O4 coatings. J. SolGel Sci. Technol. 2003. Vol. 26. No. 1. P. 771—775. DOI: 10.1023/A:1020770810027.


Review

For citations:


Radishevskaya N.I., Nazarova A.Yu., Lvov O.V., Kasatsky N.G. Synthesis of inorganic cobalt-containing spinel pigments by SHS method. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(2):21-28. (In Russ.) https://doi.org/10.17073/1997-308X-2020-2-21-28

Views: 797


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)