Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Synthesis features, structure and properties of promising high-temperature ceramics in the Hf-Ta-B-Ti-Si system

https://doi.org/10.17073/1997-308X-2020-2-29-43

Abstract

The study covers the elemental synthesis features of Hf-Ta-B-Ti-Si ceramic materials used to obtain promising high-temperature ceramics and analyze its structure and properties. The macrokinetics of self-propagating high-temperature synthesis (SHS) were studied. Combustion temperature and velocity as a function of initial temperature were plotted. It was established that chemical interactions occurring in the liquid phase play a pivotal role in the combustion process. Structure and phase formation processes were studied using the stopped combustion front technique. The mechanism of phase formation in the combustion wave was determined. The primary crystals of hafnium, titanium and tantalum diborides are precipitated from the super-saturated melt after the Si and Ti contact melting and B, Hf and Ta dissolution in the melt through the reactive diffusion process. A two-phase structure consisting of complex solid solutions based on diboride and borosilicide is formed due to the similarity of the crystal lattices. Porous synthesis products of the specified composition were milled into powders with the required particle size distribution for subsequent hot pressing (HP) or spark plasma sintering (SPS). It was found that specimens produced by HP, SPS, and SHS pressing feature a similar phase composition containing solid solutions based on diboride (Hf,Ti,Ta)B2 and borosilicide (Hf,Ti,Ta)5Si3B. Specimens were made of ceramics produced using the above technologies for physical-mechanical testing. It was found that the hardness and elastic modulus of (Hf,Ti,Ta)B2 solid solution are 2-3 times higher than that of (Hf,Ti,Ta)5Si3B borosilicide. Depending on composition, the density of ceramics produced varied from 8 to 6.5 g/cm3, which corresponds to a porosity of less than 5 %. Temperature dependences of heat capacity and diffusivity were determined. The heat conductivity of ceramics produced by HP and SPS was 24.05 and 23.1 W/(m•K), respectively.

About the Authors

V. V. Kurbatkina
MISIS-ISMAN
Russian Federation

Cand. Sci. (Tech.), Leading researcher, Scientific-Educational Centre (SEC) of SHS, MISIS-ISMAN.

119049, Moscow, Leninskii pr., 4.



E. I. Patsera
MISIS-ISMAN
Russian Federation

Cand. Sci. (Tech.), Researcher, SEC of SHS, MISIS-ISMAN.

119049, Moscow, Leninskii pr., 4.



D. V. Smirnov
MISIS-ISMAN
Russian Federation

Laboratory assistant, Master, SEC of SHS, MISIS-ISMAN.

119049, Moscow, Leninskii pr., 4.



E. A. Levashov
MISIS-ISMAN
Russian Federation

Dr. Sci. (Tech.), Prof., Acad. of RANS, Director of the Scientific-educational center SHS, MISIS-ISMAN, Head of the Department of powder metallurgy and functional coatings, NUST «MISIS».

119049, Moscow, Leninskii pr., 4.



References

1. Opeka M.M., Talmy I.G., Zaykoski J.A. Oxidation-based materials selection for 2000°C+ hypersonic aerosurfaces: theoretical considerations and historical experience. J. Mater. Sci. 2004. Vol. 39. P. 5887—904. DOI: 10.1023/B:JMSC.0000041686.21788.77.

2. Zhang Z., Nan C., Xu J., Gao Z., Li M., Wang J. Oxidation behaviors of C—ZrB2—SiC composite at 2100°C in air and O2. J. Mater. Sci. Technol. 2014. Vol. 30. No. 12. P. 1223—1229. DOI: 10.1016/j.jmst.2014.04.013.

3. Guo S-Q. Densification of ZrB2-based composites and their mechanical and physical properties: a review. J. Eur. Ceram. Soc. 2009. Vol. 29 (6). Р. 995—1011. DOI: 10.1016/j.jeurceramsoc.2008.11.008.

4. Schlichting K.W., Padture N.P., Klemens P.G. Thermal conductivity of dense and porous yttria-stabilized zirconia. J. Mater. Sci. 2001. Vol. 36. No. 12. P. 3003— 3010. DOI: 10.1023/A:1017970924312.

5. Fahrenholtz W.G., Hilmas G.E., Talmy I.G., Zaykoski J.A. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 2007. Vol. 90 (5). Р. 1347—1364. DOI: 10.1111/j.1551-2916.2007.01583.x.

6. Wuchina E., Opila E., Opeka M., Fahrenholtz W., Talmy I. UHTCs: Ultra-high temperature ceramic materials for extreme environment applications. Interface. 2007. Vol. 16 (4). P. 30—36. DOI: 10.1007/s10853-017-0857-4.

7. Rodriguez.-Sanchez. J, Sanchez-Gonzalez E, Guiberteau F, Ortiz A.L. Contact-mechanical properties at intermediate temperatures of ZrB2 ultra-high-temperature ceramics pressureless sintered with Mo, Ta, or Zr disilicides. J. Eur. Ceram. Soc. 2015. Vol. 35. P. 3179—3185. DOI: 10.1016/j.jeurceramsoc.2015.04.023.

8. Zhang X., Hilmas G.E., Fahrenholtz W.G. Synthesis, densification, and mechanical properties of TaB2. Mater. Lett. 2008. Vol. 62. P. 4251—4253. DOI: 10.1016/j.matlet.2008.06.052.

9. Zhang L, Pejakovic D.A., Marschall J., Gasch M. Thermal and electrical transport properties of spark plasma-sintered HfB2 and ZrB2 ceramics. J. Am. Ceram. Soc. 2011. Vol. 94. P. 2562—2570. DOI: 10.1111/j.1551-2916.2011.04411.x.

10. Sciti D., Balbo A., Bellosi A. Oxidation behaviour of a pressureless sintered HfB2—MoSi2 composite. J. Eur. Ceram. Soc. 2009. Vol. 29. P. 1809—1815. DOI: 10.1016/j.jeurceramsoc.2008.09.018.

11. Justin J.F., Jankowiak A. Ultra-high temperature ceramics: Densification, properties and thermal stability. Aerospace Lab. 2011. No. 3. P. 1—11. URL: https://hal.archives-ouvertes.fr/hal-01183657/.

12. Zimmermann J.W., Hilmas G.E., Fahrenholtz W.G., Dinwiddie R.B., Porter W.D., Wang H. Thermophysical properties of ZrB2 and ZrB2—SiC ceramics. J. Am. Ceram. Soc. 2008. Vol. 91. P. 1405—1411. DOI: 10.1111/j.1551-2916.2008.02268.x.

13. Opila E., Levine S. Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions. J. Mater. Sci. 2004. Vol. 39. P. 5969—5977. DOI: 10.1023/B:JMSC.0000041693.32531.d1.

14. Sayir A. Carbon fiber reinforced hafnium carbide composite. J. Mater. Sci. 2004. Vol. 39. P. 5995—6003. DOI: 10.1023/B:JMSC.0000041696.64055.8c.

15. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2017. Vol. 62. P. 203—239. DOI: 10.1080/09506608.2016.1243291.

16. Kurbatkina V.V., Patsera E.I., Levashov E.A., Timofeev A.N. Self-propagating high-temperature synthesis of refractory boride ceramics (Zr,Ta)B2 with superior properties. J. Eur. Ceram. Soc. 2018. Vol. 38. P. 1118—1127. DOI: 10.1016/j.jeurceramsoc.2017.12.031.

17. Licheri R, Orris R, Musa C, Locci A.M., Cao G. Spark plasma sintering of ZrB2- and HfB2-based ultra high temperature ceramics prepared by SHS. Int. J. SHS. 2009. Vol. 18. P. 15—24. DOI: 10.3103/S106138620901004X.

18. Licheri R., Orri R., Musa C., Cao G. Processing and characterization of Zr-, Hf- and Ta-based ultra high temperature ceramics. Adv. Sci. Technol. 2010. Vol. 65. P. 118— 123. DOI: 10.4028/www.scientific.net/AST.65118.

19. Orri R., Cao G. Comparison of reactive and non-reactive spark plasma sintering routes for the fabrication of monolithic and composite UHTC materials. Materials. 2013. Vol. 6 (5). P. 1566—1583. DOI: 10.3390/ma6051566.

20. Musa C., Licheri R., Orri R., Cao G. Synthesis, sintering and oxidative behaviour of HfB2—HfSi2 ceramics. Industr. Eng. Chem. Res. 2014. Vol. 53. P. 9101—9108. DOI: 10.1021/ie4032692.

21. Licheri R., Musa C., Orri R., Cao G. Influence of the heating rate on the in-situ synthesis and consolidation of ZrB2 by reactive spark plasma sintering. J. Eur. Ceram. Soc. 2015. Vol. 35. P. 1129—1137. DOI: 10.1016/j.jeurceramsoc.2014.10.039.

22. Licheri R., Musa C., Orri R., Cao G., Sciti D., Silvestro-ni L. Bulk monolithic zirconium and tantalum diborides by reactive and non-reactive spark plasma sintering. J. Alloys Compd. 2016. Vol. 663. P. 351—359. DOI: 10.1016/j.jallcom.2015.12.096.

23. Kurbatkina V.V., Patsera E.I., Levashov E.A. Combustion synthesis of ultra-high-temperature materials based on (Hf,Ta)B2. Part 1: The mechanisms of combustion and structure formation. J. Ceram. Int. 2019. Vol. 45 (3). P. 4067— 4075. DOI: 10.1016/j.ceramint.2018.10.113.

24. Potanin A.Yu., Pogozhev Yu.S., Levashov E.A., Novikov A.V., Shvindina N.V., Sviridova T.A. Kinetics and oxidation mechanism of MoSi2—MoB ceramics in the 600—1200 °C temperature range. J. Ceram. Int. 2017. Vol. 43. P. 10478— 10486. DOI: 10.1016/j.ceramint.2017.05.093.

25. Vorotilo S., Potanin A.Y., Iatsyuk I.V., Levashov E.A. SHS of silicon-based ceramics for the high-temperature applications. Adv. Eng. Mater. 2018. Vol. 20. No. 1800200. DOI: 10.1002/adem.201800200.

26. Vorotilo S., Potanin A.Yu., Pogozhev Yu.S., Levashov E.A., Kochetov N.A., Kovalev D.Yu. Self-propagating high-temperature synthesis of advanced ceramics MoSi2—HfB2— MoB. J. Ceram. Int. 2019. Vol. 45. No. 1. P. 96—107. DOI: 10.1016/j.ceramint.2018.09.138

27. Samsonov G.V., Vinitskiy I.M. Refractory connections. Moscow: Metallurgiya, 1976 (In Russ.).

28. Shiryaev A.A. Thermodynamic of SHS: Modern approach. Int. J. SHS. 1995. Vol. 4. P. 351—362.

29. Bjrovinskaya I.P., Gromov A.A., Levashov E.A., Maksimov Yu.M., Mukasyan A.S., Rogachev A.S. Concise enciclopedia of self-propagated high-temperature synthesis. Elsevier, 2017.

30. Shelekhov E.V., Sviridova T.A. Programs for X-ray analysis of polycrystals. Metallovedenie i termicheskaya obrabotka metallov. 2000. No. 8. P. 16—19 (In Russ.).

31. Petrzhik M.I., Levashov E.A. Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing. Crystallogr. Rep. 2007. Vol. 52 (6). P. 966—974.

32. Lyakishev N.P. Dual metal system status diagrams: Directory. Moscow: Mashinostroyeniye, 1996 (In Russ.).

33. Klopotov A.A., Abzayev Yu.A., Petrikova E.A., Budovskikh E.A., Gromov VE. Electron-ion-plasma methods of nanostructuring surface layer of alloys based on titanium and aluminium. In: Materialy 10 Mezhdunarodnoy konf. «Vzaimodeystviye izlucheniy s tverdym telom» (Minsk, Belarus', 2013). Minsk: Izdatel'skiy tsentr BGU, 2013. Р. 254—259 (In Russ.).

34. Kurbatkina V.V., Patsera E.I., Smirnov D.V., Levashov E.A., Vorotilo S., Timofeev A.N. Combustion synthesis of ultra-high-temperature ceramics based on (Hf,Ta)B2. Part 2: Structure, mechanical and thermophysical properties of consolidated ceramics. J. Ceram. Int. 2019. Vol. 45. P. 4076—4083. DOI: 10.1016/j.ceramint.2018.10.165.


Review

For citations:


Kurbatkina V.V., Patsera E.I., Smirnov D.V., Levashov E.A. Synthesis features, structure and properties of promising high-temperature ceramics in the Hf-Ta-B-Ti-Si system. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(2):29-43. (In Russ.) https://doi.org/10.17073/1997-308X-2020-2-29-43

Views: 838


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)