Synthesis of porous composite material at combustion of titanium and boron powders and nickel-clad aluminum granules
https://doi.org/10.17073/1997-308X-2020-2-44-54
Abstract
Self-propagating high-temperature synthesis (SHS) was carried out in the Ni-Al-Ti-B system. The aim of the study was to obtain a composite material with ceramic and intermetallic frameworks and with a developed porous structure in the combustion mode in one process step from the «boron-titanium-large nickel-clad aluminum granules» powder system pressed by sequential batch compaction. The synthesis process featured by a stage nature where a highly exothermic reaction between titanium and boron formed a boride matrix with developed open porosity and acted as a «chemical furnace» to maintain the reaction in clad granules resulting in nickel aluminides. The aluminide melt impregnated the porous diboride matrix. The synthesis stages are reflected in the process thermograms. The final structure of the product features multi-scale porosity characterized by large round pores (~100÷160 μm in diameter) with the location corresponding to the position of clad granules in the original powder system. Small (0.1-5.0 μm) and some average-sized (up to 15 μm) diboride matrix pores are filled with nickel aluminides. The resulting material has a composite structure in analogy with interpenetrating frameworks - ceramic (TiB2) and aluminide (NiAl, Ni3Al). The diboride matrix is formed by randomly oriented small hexagonal crystals with a size of mainly ~0.2÷1.0 μm across. Diboride crystalline grains increase in size to 2-6 um in diameter and 0.5-2.0 μm in thickness near the macropores becoming strongly plate-shaped. The main size of intermetallic layers filling the pores between the diboride crystalline grains is ~0.2÷1.0 μm.
About the Authors
M. A. PonomarevRussian Federation
Cand. Sci. (Phys.-Math.), Senior research scientist, Laboratory of self-propagating high-temperature synthesis (SHS), Merzhanov Institute of Structural Macrokinetics and Materials Science of Russian Academy of Sciences (ISMAN).
142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8.
V. E. Loryan
Russian Federation
Dr. Sci. (Tech.), Head of Laboratory of SHS, ISMAN.
142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8.
References
1. Borovinskaya I.P. On the regulation of the composition, structure and properties of SHS-products. In: Concept of development of SHS as a field of scientific-technical progress: Collection оf articles. Ed. by Merzhanov A.G. Chernogolovka: Territoriya, 2003. P. 139—142 (In Russ.).
2. Maznoi A.S., Kirdyashkin A.I. Influence of initial parameters of reacting systems on the porosity structure of self-propagating high-temperature synthesis products. Combust. Explos. Shock Waves. 2014. Vol. 50. No. 1. P. 60—67. DOI: 10.1134/S0010508214010079.
3. Andriyanov D.I., Amosov A.P., Samboruk A.R. Influence of granulation of powder charge of titanium—boron on regularities of self-propogating high-temperature synthesis of porous material. Key Eng. Mater. 2016. Vol. 685. P. 500— 504. DOI: 10.4028/www.scientific.net/KEM.685.500.
4. Ponomarev M.A., Loryan V.E., Kochetov N.A., Merzha-nov A.G. SHS in preliminary structured compacts: I. Ni— Al blends. Int. J. Self. Prop. High Temp. Synth. 2013. Vol. 22. No. 4. P. 193—201. DOI: 10.3103/S1061386213040043.
5. Ponomarev M.A., Loryan V.E., Shchukin A.S., Merzha-nov A.G. SHS in preliminary structured compacts: II. Ti—2B and Ti—Al blends. Int. J. Self. Prop. High Temp. Synth. 2013. Vol. 22. No. 4. P. 202—209. DOI: 10.3103/S1061386213040055.
6. Ponomarev M.A., Loryan V.E. Synthesis of porous composite materials via combustion of a mixture of titanium, VT6 alloy, and amorphous boron powders. Inorg. Mater. 2018. Vol. 54. No. 8. P. 772—778. DOI: 10.1134/S0020168518080150.
7. Ponomarev M.A., Loryan V.E. Synthesis of composite material in Al—Ti—B system during combustion of titanium and boron powders and aluminum-clad granules of VT6 alloy. Inorg. Mater. Appl. Res. 2019. Vol. 10. No. 5. P. 1204—1212. DOI: 10.1134/S2075113319050241.
8. Hyjek P., Sulima I., Jaworska L. Application of SHS in the manufacture of (NiAl/Ni3Al)/TiB2 composite. Metal. Mater. Trans. A. 2019. Vol. 50. No. 8. P. 3724—3735. DOI: 10.1007/s11661-019-05306-w.
9. Camurlu H.E., Maglia F. Self-propagating high-temperature synthesis of ZrB2 or TiB2 reinforced Ni—Al composite powders. J. Alloys Compd. 2009. Vol. 478. No. 1-2. P. 721—725. DOI: 10.1016/j.jallcom.2008.11.139.
10. Bhaumik S.K., Divakar C., Rangaraj L., Singh A.K. Reaction sintering of NiAl and TiB2—NiAl composites under pressure. Mater. Sci. Eng. A. 1998. Vol. 257. No. 2. P. 341— 348. DOI: 10.1016/S0921-5093(98)00862-4.
11. Li Ma, Hong Zhi Cui, Li Li Cao, Fang Lei Teng, Ning Cui, Lei Liu. The synthesis of porous TiC—TiB2—NiAl composites by SHS. Adv. Mater. Res. 2013. Vol. 634-638. P. 2110—2118. DOI: 10.4028/www.scientific.net/AMR.634-638.2110.
12. Wei N., Cui H., Ma L., Song X., Liu W., Hou N. Porous TiC—TiB2—NiAl composites and effect of NiAl contents on pore structure and microstructure. Powder Metallurgy. 2015. Vol. 58. P. 273—280. DOI: 10.1179/1743290115Y.0000000007.
13. Heng Zhang, He-Guo Zhu. In Situ Synthesis of TiB2/NiAl composite. In: Proceedings of the 2nd Annual International Conference on Advanced Material Engineering (AME 2016). Atlantis Press, 2016. P. 31—135. DOI: 10.2991/ame-16.2016.22.
14. Guo J.T., Xing Z.P. Investigation of NiAl—TiB2 in situ composites. J. Mater. Res. 1997. Vol. 12. No. 4. P. 1083—1090. DOI: 10.1557/JMR.1997.0151.
15. Yi H.C., Varma A., Rogachev A.S., McGinn P.J. Gravity-induced microstructural nonuniformities during combustion synthesis of intermetallic-ceramic composite materials. Ind. Eng. Chem. Res. United States. 1996. Vol. 35. No. 9. P. 2982—2985. DOI: 10.1021/ie950750v.
16. Mukasyan A.S., Pelekh A., Varma A., Rogachev A.S. Effects of gravity on combustion synthesis in heterogeneous gasless systems. AIAA Journal. 1997. Vol. 35. No. 12. P. 1821— 1828. DOI: 10.2514/3.13757.
17. Merzhanov A.G. Thermally coupled SHS reactions. Int. J. Self. Prop. High Temp. Synth. 2011. Vol. 20. No. 1. P. 61— 63. DOI: 10.3103/S1061386211010109.
18. Mukasyan A.S., Lau C., Varma A. Gasless combustion of aluminum particles clad by nickel. Combust. Sci. and Tech. 2001. Vol. 170. No. 1. P. 67—85. DOI: 10.1080/00102200108907850.
19. Lapshin O.V., Ovcharenko V.E. A mathematical model of high-temperature synthesis of nickel aluminide Ni3Al by thermal shock of a powder mixture of pure elements. Combust. Explos. Shock Waves. 1996. Vol. 32. No. 3. P. 299—305. DOI: 10.1007/BF01998460.
20. Gasparyan A.G., Shteinberg A.S. Macrokinetics of reaction and thermal explosion in Ni and Al powder mixtures. Combust. Explos. Shock Waves. 1988. Vol. 24. No. 3. P. 324— 330. DOI: 10.1007/BF00750616.
21. Korchagin M.A., Filimonov V.Y., Smirnov E.V., Lyakhov N.Z. Thermal explosion of a mechanically activated 3Ni—Al mixture. Combust. Explos. Shock Waves. 2010. Vol. 46. No. 1. P. 41—46. DOI: 10.1007/s10573-010-0007-7.
22. Rosenband V., Gany A. Thermal explosion synthesis of a magnesium diboride powder. Combust. Explos. Shock Waves. 2014. Vol. 50. No. 6. P. 653—657. DOI: 10.1134/S0010508214060057.
23. Larina T.V., Perminov V.P., Sosnov A.N., Neronov V.A. Methods of production of aluminum and magnesium borides. Geo-Siberia. 2007. Vol. 4. No. 1. P. 109—112 (In Russ.).
24. Popov D.A., Ogorodov D.V., Trapeznikov A.V. Alternative sources of boron-containing raw materials for the Al—B ligatures production (review). Trudy VIAM. 2015. No. 10. P. 41—47 (In Russ.).
25. Azatyan T.S., Mal'tsev V.M., Merzhanov A.G., Seleznev V.A. Combustion wave propagation mechanism in titaniumboron mixtures. Combust. Explos. Shock Waves. 1980. Vol. 16. No. 2. P. 163—167. DOI: 10.1007/BF00740195.
26. Kirdyashkin A.I., Maksimov Yu.M., Merzhanov A.G. Effects of capillary flow on combustion in a gas-free system. Combust. Explos. Shock Waves. 1981. Vol. 17. No. 6. P. 591—595. DOI: 10.1007/BF00784246.
27. Andreev V.A., Levashov E.A., Mal'tsev V.M., Khavskii N.N. Characteristics of capillary mass transfer in a combustion wave in multicomponent heterogeneous systems. Combust. Explos. Shock Waves. 1988. Vol. 24. No. 2. P. 189—193. DOI: 10.1007/BF00749186.
28. Ponomarev M.A., Shcherbakov V.A., Shteinberg A.S. Combustion patterns of thin layers of Ti—B powder mixture. Doklady Academii Nauk. 1995. Vol. 340. No. 5. P. 642— 645 (In Russ.).
Review
For citations:
Ponomarev M.A., Loryan V.E. Synthesis of porous composite material at combustion of titanium and boron powders and nickel-clad aluminum granules. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(2):44-54. (In Russ.) https://doi.org/10.17073/1997-308X-2020-2-44-54