Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Synthesis of nanoporous ceramic materials for filtration of liquids and gases by technological combustion method

https://doi.org/10.17073/1997-308X-2020-2-55-63

Abstract

Experimental and analytical studies on the synthesis of a Ti-Al-based ceramic material with a nanoscale porous structure were conducted. The results of previous studies conducted by the authors showed that it is reasonable to obtain porous ceramic materials designed for filtration of liquids and gases by thermal explosion (throughout the sample) rather than by layer-by-layer combustion. Self-propagating high-temperature synthesis (SHS) was used to obtain nanoporous ceramic membranes from a mixture of powders, wt.%: 40Ti + 60Al in one stage with the TiAl3 formation. It was found that the synthesized material consists of the main phase TiAl3 with a small amount of aluminum oxidized into Al2O3 and unreacted. The microstructural analysis of the sample fracture showed that the resulting material has a developed surface and high open porosity. Empirically investigated open porosity is up to 48%, and the pore size ranges from 0.1 to 0.2 цт. The efficiency of the porous material obtained for the Ti-Al-based ceramic SHS filter reaches 99.999 %, gas flow resistance is 100 mmHg, filtration index is 0.062. Gas ultrafiltration capacity is up to 40 l/(cm2•h) at a pressure drop on the filter of 2 kPa, and water ultrafiltration capacity ranges from 2 to 10 l/(cm2•h) at a pressure drop on the filter of 0.1 MPa. Membranes made of ceramic materials with a gradient nanoporous structure by this method can be used as filter elements for small units providing fine water cleaning from bacteria, viruses, dissolved organic carbon, as well as for fine cleaning of air, process gases from dispersed micro-impurities and radioactive aerosols. The membrane SHS filters developed can also be used in units operating in aggressive environments and/or at high temperatures (up to 1000 °C).

About the Authors

M. I. Alymov
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)
Russian Federation

Dr. Sci. (Tech.), Corresponding member of Russian Academy of Sciences, Director of Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN).

142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8.



V. I. Uvarov
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)
Russian Federation

Cand. Sci. (Tech.), Leading research scientist, Laboratory of self-propagating high-temperature synthesis, ISMAN.

142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8.



R. D. Kapustin
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)
Russian Federation

Cand. Sci. (Tech.), Senior research scientist, Laboratory of shock-wave processes, ISMAN.

142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8.



A. O. Kirillov
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)
Russian Federation

Post-graduate student, Junior researcher, Laboratory of high-energy methods of synthesis of ultrahigh-temperature ceramic materials, ISMAN.

142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8.



V. E. Loryan
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)
Russian Federation

Dr. Sci. (Tech.), Head of Laboratory of self-propagating high-temperature synthesis, ISMAN.

142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8.



References

1. Nikitina S.Yu., Rudakov O.B. Ion exchange reactor for purification of food ethanol from trace impurities. Sorbtsionnye i khromatograficheskie protsessy. 2012. Vol. 12. Iss.6. P. 1018—1024 (In Russ.).

2. Zhigang Lei, Chengna Dai, Jiqin Zhu, Biaohua Chen. Extractive distillation with ionic liquids: A review. Journal Review. Separations: Materials, Devices and Processes. Vol. 60. Iss. 9. P. 3312—3329. DOI: 10.1002/aic.14537.

3. Farakhov M.I., Laptev A.G. Energy-efficient equipment for separation and purification of substances in chemical technology. Vestnik Kazanskogo tekhnol. univ. 2011. No. 9. P. 152—158 (In Russ.).

4. Sagar Sharma, Earaf Momin, Shivam Singh, Nilesh Singh. Desalination of seawater by reverse osmosis (Ro) method. Int. J. Innovat. Sci. Res. Technol. 2018. Vol. 3. Iss. 4. P. 159—162. https://ru.scribd.com/document/377348802/Desalination-of-Seawater-by-Reverse-Osmosis-Ro-Method.

5. Darwish M.A., Al-Asfour F. Energy consumption in equivalent work by different desalting methods. Case Study for Kuwait, Desalination. 2002. No.152. P. 83—92.

6. Maheshwari G.P., Al-Ramadhan M., Al-Abdulhadi M. Energy requirement of water production in dual-purpose plants. Desalination. 1995. No. 101. P.133—140.

7. Dytnerskii Yu.I. Baromembrane processes: Theory and calculation. Moscow: Khimiya, 1986 (In Russ).

8. Borovinskaya I.P., Merzhanov A.G., Uvarov V.I. Capillary-porous SHS materials for filtration of liquids and gases. Nauka — proizvodstvu. 2001. No. 10. P. 28—32 (In Russ.).

9. Kiparisov S.S., Libenson G.A. Powder metallurgy. Moscow: Metallurgiya, 1980 (In Russ.).

10. Youchang Xiao, Tai-Shung Chung, Mei Lin Chng, Shouji Tamai, Akihiro Yamaguchi. Structure and properties relationships for aromatic polyimides and their derived carbon membranes: experimental and simulation approaches. J. Phys. Chem. 2005. Vol.109. Iss. 40. P. 18741—18748. DOI: 10.1021/jp050177l.

11. Lachman I.M., Lewis R.M. Anisotropic cordierite monolith: Pat. 3885977 (USA). 1975.

12. Kirsh V.A. Filtration of submicron aerosols by fiber filters: Abstr. diss. of Dr. Sci. (Phys-Math.). Moscow: IPCE, 2012 (In Russ.). https://www.researchgate.net/publication/233885121_filtration_of_submicron_aerosols_by_fibrous_filters_DSci_Thesis_synopsis_2012_In_Russian.

13. Artyushin V.R., Volokitin G.G., Lysak G.V., Lysak I.A., Malinovskaya T.D., Tchaikovsky O.N. Wastewater treatment system using polypropylene thin-fiber material. Vodoochistka. 2012. No. 2. P. 51—55 (In Russ.).

14. Barboza S.D., Seeley W.P., Shucosky A.C. Gas backwash of pleated filters: Pat. 5468397 (USA). 1995.

15. Weston M.H., Peterson G.W., Browe M.A., Jones P.M., Farha O.K., Hupp J.T, Nguyen SonBinh. Removal of airborne toxic chemicals by porous organic polymers containing metal-catecholates. Chem. Commun. 2013. Iss. 29. P. 2995—2997. DOI: 10.1039/C3CC40475G.

16. Salmimiesa R, Kallasb J., Ekbergc B, Gorresd G, Andreassene J.-P, Becke R, Hakkinena A. The scaling and regeneration of the ceramic filter medium used in the dewatering of a magnetite concentrate. Int. J. Miner. Process. 2013. Vol. 119. P. 21—26. DOI: 10.1016/j.minpro.2012.12.006.

17. Xinyang Jiao, Xiaohong Wang, Peizhong Feng, Yanan Liu, Laiqi Zhang, Farid Akhtar. Microstructure evolution and pore formation mechanism of porous TiAl3 intermetallics via reactive sintering. Acta Metal. Sinica (Eng. Lett.). 2018. Vol. 31. Iss. 4. P. 440—448. DOI: 10.1007/s40195-017-0663-7.

18. Uvarov V.I., Borovinskaya I.P., Merzhanov A.G. The method of producing porous material and the material obtained by this method: Pat. 2175904 (RF) 2011 (In Russ.).

19. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2017. Vol. 62. No.4. P. 203—239. DOI: 10.1080/09506608.2016.1243291.

20. Quanlin Shi, Botao Qin, Peizhong Feng, Huashen Ran, Binbin Song, Jianzhong Wangc, Yuan Ge. Synthesis, microstructure and properties of Ti—Al porous intermetallic compounds prepared by a thermal explosion reaction. RSC Advances. 2015. Iss. 57. P. 46339—46347. https://pubs.rsc.org/en/Content/ArticleLanding/RA/2015/C5RA04047G#!div.

21. Merzhanov A.G. Combustion processes and materials synthesis. Chernogolovka: ISMAN, 1998 (In Russ.).

22. Jiang Y., He Y.H., Xu N.P., Zou J., Huang B.Y., Liu C.T. Effects of the Al content on pore structures of porous TiAl alloys. Intermetallics. 2008. Vol. 16. Iss. 2. P. 327—332. DOI: 10.1016/j.intermet.2007.11.002.

23. Bakunov V.S., Balkevich V.L., Guzman I.Ya., Lukin E.S. Workshop on the technology of ceramics and refractories. Moscow: Strojizdat, 1972 (In Russ.).

24. Klimenko A.P. Methods and instruments for measuring dust concentration. Moscow: Khimiya, 1978 (In Russ.).

25. Van de G. Hulst. Light scattering by small particles, Moscow: Inostrannaya literatura, 1961 (In Russ.).

26. Uvarov V.I., Borovinskaya I.P., Zagnitko A.V., Trotsenko N.M., Lukin E.S. Filters for installations for the production of water for injection solutions (pyrogen-free water). Ogneupory i tekhnicheskaya keramika. 2003. No. 5. P. 22—28 (In Russ.).


Review

For citations:


Alymov M.I., Uvarov V.I., Kapustin R.D., Kirillov A.O., Loryan V.E. Synthesis of nanoporous ceramic materials for filtration of liquids and gases by technological combustion method. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(2):55-63. (In Russ.) https://doi.org/10.17073/1997-308X-2020-2-55-63

Views: 725


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)